题目列表(包括答案和解析)
等差数列{
}前n项和为
,满足
,则下列结论中正确的是( )
|
(14分)已知函数f(x)=
在定义域内为奇函数,
且f(1)=2,f(
)=
;
(1)确定函数的解析式;
(2)用定义证明f(x)在[1,+∞)上是增函数;
|
必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。
第Ⅰ卷 选择题(共50分)
一、选择题(本大题共10小题,每小题5分,满分50分)
1、设全集U={
是不大于9的正整数},
{1,2,3 },
{3,4,5,6}则图中阴影部分所表示的集合为( )
A.{1,2,3,4,5,6} B. {7,8,9}
C.{7,8} D. {1,2,4,5,6,7,8,9}
2、计算复数(1-i)2-
等于( )
A.0 B.2 C. 4i D. -4i
某校高三有甲、乙两个班,在某次数学测试中,每班各抽取5份试卷,所抽取的平均得分相等(测试满分为100分),成绩统计用茎叶图表示如下:
|
甲 |
|
乙 |
|
9 8 |
8 |
4 8 9 |
|
2 1 0 |
9 |
|
(1)求
;
(2)学校从甲班的5份试卷中任取两份作进一步分析,在抽取的两份样品中,求至多有一份得分在
之间的概率.
甲、乙两药厂生产同一型号药品,在某次质量检测中,两厂各有5份样品送检,检测的平均得分相等(检测满分为100分,得分高低反映该样品综合质量的高低)。成绩统计用茎叶图表示如下:
| 甲 |
| 乙 |
| 9 8 | 8 | 4 8 9 |
| 2 1 0 | 9 |
|
⑴求
;
⑵某医院计划采购一批该型号药品,从质量的稳定性角度考虑,你认为采购哪个药厂的产品比较合适?
⑶检测单位从甲厂送检的样品中任取两份作进一步分析,在抽取的两份样品中,求至少有一份得分在(90,100] 之间的概率.
一、选择题:(本大题共10小题,每小题5分,共50分)
1
B
A 3
文C(理C) 4
D 5
文A(理B) 6
文B(理C) 7
文C(理C) 8
文C(理A) 9
文A (理D) 10
文D(理A)
三、解答题:(本大题共6个解答题,满分76分,)
线为y轴建立平面直角坐标系如图所示,
则A(-4,0),N(4,0),设P(x,y) 
由|PM|:|PN|=
,|PM|2=|PA|2 ?|MA|2得:

代入坐标得:

整理得:
即

所以动点P的轨迹是以点

(理)解:(I)当a=1时

或
或

或

(II)原不等式
设
有

当且仅当
即
时



解得




若由方程组
解得
,可参考给分
(理)解:(Ⅰ)设
(a≠0),则
…… ①
…… ②
又∵
有两等根
∴
…… ③
由①②③得
又∵

∴a<0, 故
∴

(Ⅱ)

∵g(x)无极值
∴方程

得

或
或

或

(II)原不等式
设
有

当且仅当
即
时

(理)解:以AN所在直线为x轴,AN的中垂
线为y轴建立平面直角坐标系如图所示,
则A(-4,0),N(4,0),设P(x,y) 
由|PM|:|PN|=
,|PM|2=|PA|2 ?|MA|2得:

代入坐标得:

整理得:
即

所以动点P的轨迹是以点

…… ①
…… ②
又∵
有两等根
∴
…… ③
由①②③得
又∵

∴a<0, 故
∴

(Ⅱ)

∵g(x)无极值
∴方程

得

(理)解:(I)设
(1)
又
故
(2)
由(1),(2)解得

(II)由向量
与向量
的夹角为
得
由
及A+B+C=
知A+C=
则





由0<A<
得
,得
故
的取值范围是

Sn+1=2an+1-3(n+1),两式相减并整理得:an+1=2an+3

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+
a1=6
,进而可知an+3
所以
,故数列{3+an}是首相为6,公比为2的等比数列,
所以3+an=6
,即an=3(
)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com