题目列表(包括答案和解析)
( 本题满分12分) 设
,
,
(1)当
时,若![]()
求
。
(2)当
时,若
展开式中
的系数是20,求
的值。
(3)
展开式中
的系数是19,当
,
变化时,求
系数的最小值。
(本题满分12分)
某学校的课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若单科成绩在85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的
列联表(单位:人)
| 数学成绩优秀 | 数学成绩不优秀 | 总计 | |
| 物理成绩优秀 | |||
| 物理成绩不优秀 | |||
| 总计 | 20 |
(2)根据(1)中表格的数据计算,是否有99%的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考公式:![]()
| P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(本题满分12分)
对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:
):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;
(2)计算甲种商品重量误差的样本方差;
(3)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽
中的概率。
(本题满分12分)
为了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
![]()
(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
(2)求调查中随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
(本题满分12分)某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.
|
|
员工号 |
1 |
2 |
3 |
4 |
|
甲组
|
件数 |
9 |
11 |
1l
|
9
|
|
|
员工号 |
1 |
2 |
3 |
4 |
|
乙组
|
件数 |
b 9 |
8 |
10 |
9 |
(1)用茎叶图表示两组的生产情况;
(2)求乙组员工生产件数的平均数和方差;
(3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率.
(注:方差
,其中
为x1,x2,…,xn的平均数)
一、选择题:(本大题共10小题,每小题5分,共50分)
1
B
A 3
文C(理C) 4
D 5
文A(理B) 6
文B(理C) 7
文C(理C) 8
文C(理A) 9
文A (理D) 10
文D(理A)
三、解答题:(本大题共6个解答题,满分76分,)
线为y轴建立平面直角坐标系如图所示,
则A(-4,0),N(4,0),设P(x,y) 
由|PM|:|PN|=
,|PM|2=|PA|2 ?|MA|2得:

代入坐标得:

整理得:
即

所以动点P的轨迹是以点

(理)解:(I)当a=1时

或
或

或

(II)原不等式
设
有

当且仅当
即
时



解得




若由方程组
解得
,可参考给分
(理)解:(Ⅰ)设
(a≠0),则
…… ①
…… ②
又∵
有两等根
∴
…… ③
由①②③得
又∵

∴a<0, 故
∴

(Ⅱ)

∵g(x)无极值
∴方程

得

或
或

或

(II)原不等式
设
有

当且仅当
即
时

(理)解:以AN所在直线为x轴,AN的中垂
线为y轴建立平面直角坐标系如图所示,
则A(-4,0),N(4,0),设P(x,y) 
由|PM|:|PN|=
,|PM|2=|PA|2 ?|MA|2得:

代入坐标得:

整理得:
即

所以动点P的轨迹是以点

…… ①
…… ②
又∵
有两等根
∴
…… ③
由①②③得
又∵

∴a<0, 故
∴

(Ⅱ)

∵g(x)无极值
∴方程

得

(理)解:(I)设
(1)
又
故
(2)
由(1),(2)解得

(II)由向量
与向量
的夹角为
得
由
及A+B+C=
知A+C=
则





由0<A<
得
,得
故
的取值范围是

Sn+1=2an+1-3(n+1),两式相减并整理得:an+1=2an+3

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+
a1=6
,进而可知an+3
所以
,故数列{3+an}是首相为6,公比为2的等比数列,
所以3+an=6
,即an=3(
)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com