题目列表(包括答案和解析)
|
| 10-x |
| 10+x |
设函数f(x)=lnx,g(x)=ax+
,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]
【解析】第一问解:因为f(x)=lnx,g(x)=ax+![]()
则其导数为![]()
由题意得,![]()
第二问,由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当
时,
,有
;当
时,
,有
;当x=1时,
,有
解:因为f(x)=lnx,g(x)=ax+![]()
则其导数为![]()
由题意得,![]()
(11)由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当
时,
,有
;当
时,
,有
;当x=1时,
,有![]()
仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x+a>0在A上有解,求实数a的取值范围.
解:令f(x)=21-x+a,因为f(x)>0在A上有解。
![]()
=2+a>0
a>-2
学习以上问题的解法,解决下面的问题,已知:函数f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函数f-1(x)及反函数的定义域A;
②设B=
,若A∩B≠
,求实数a的取值范围.
已知函数![]()
(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(Ⅲ)当x∈(0,e]时,证明:![]()
【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,
假设存在实数a,使
有最小值3,利用
,对a分类讨论,进行求解得到a的值。
第三问中,![]()
因为
,这样利用单调性证明得到不等式成立。
解:(Ⅰ) ![]()
(Ⅱ) ![]()
(Ⅲ)见解析
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com