如图.在平面直角坐标系中.O为坐标原点.A.B两点的坐标分别为A(m.0). B(0.n).且.点P从A出发.以每秒1个单位的速度沿射线AO匀速运动.设点P运动时间为t秒. (1)求OA.OB的长, (2)连接PB.若△POB的面积不大于3且不等于0.求t的范围, (3)过P作直线AB的垂线.垂足为D.直线PD与y轴交于点E.在点P 运动的过程中.是否存在这样的点P.使△EOP与△AOB全等?若存 在.请求出t的值,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.

  (1)求OA、OC的长;

  (2)求证:DF为⊙O′的切线;

  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

                

 

查看答案和解析>>

(本题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.

  (1)求OA、OC的长;

  (2)求证:DF为⊙O′的切线;

  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

                

 

查看答案和解析>>

(本题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.
  (1)求OA、OC的长;
  (2)求证:DF为⊙O′的切线;
  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.
                

查看答案和解析>>

(本题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.
  (1)求OA、OC的长;
  (2)求证:DF为⊙O′的切线;
  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.
                

查看答案和解析>>

(本题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.
  (1)求OA、OC的长;
  (2)求证:DF为⊙O′的切线;
  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.
                

查看答案和解析>>


同步练习册答案