题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:
和直线
,
(1)求圆O和直线
的直角坐标方程;(2)当
时,求直线
与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数![]()
和
,不等式
恒成立,试求实数
的取值范围.
C
[解析] 由基本不等式,得ab≤
=
=
-ab,所以ab≤
,故B错;
+
=
=
≥4,故A错;由基本不等式得
≤
=
,即
+
≤
,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D错.故选C.
.定义域为R的函数
满足
,且当
时,
,则当
时,
的最小值为( )
(A)
(B)
(C)
(D)![]()
.过点
作圆
的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条
一、选择题:(每小题5分,共60分)
ADBBC CDCDC BD
二、填空题:(每小题4分,共16分)
13. 试题.files/image176.gif)
试题.files/image178.gif)
.
14、33
15、试题.files/image182.gif)
16. ① ③ ⑤
三、解答题
17、【解】由题意,得试题.files/image184.gif)
试题.files/image186.gif)
.……4分
(1)∵
,
,∴
,
∴
. ……8分
(2)由图象变换得,平移后的函数为
,而平移后的图象关于原点对称.
∴
且
,即
且
,
∵
,∴
,即
.……12分
18、【解】解法一(I)证明:
连接A1B,设A1B∩AB1 = E,连接DE.
∵ABC―A1B
∴四边形A1ABB1是正方形,
∴E是A1B的中点,
又D是BC的中点,
∴DE∥A
∵DE
平面AB1D,A
平面AB1D,
∴A
(II)解:在面ABC内作DF⊥AB于点F,在面A1ABB1内作FG⊥AB1于点G,连接DG.
∵平面A1ABB1⊥平面ABC, ∴DF⊥平面A1ABB1,
∴FG是DG在平面A1ABB1上的射影, ∵FG⊥AB1, ∴DG⊥AB1
∴∠FGD是二面角B―AB1―D的平面角 …………………………6分
设A试题.files/image215.gif)
在△ABE中,
,
在Rt△DFG中,
,
所以,二面角B―AB1―D的大小为
…………………………8分
(III)解:∵平面B1BCC1⊥平面ABC,且AD⊥BC,
∴AD⊥平面B1BCC1,又AD
平面AB1D,∴平面B1BCC1⊥平面AB1D.
在平面B1BCC1内作CH⊥B1D交B1D的延长线于点H,
则CH的长度就是点C到平面AB1D的距离. ……………………………10分
由△CDH∽△B1DB,得试题.files/image224.gif)
|