(Ⅲ)是否存在最小整数.使得对于任意.有成立.若存在.求出的值,若不存在.说明理由. 2009年厦门市高三质量检查测试一 查看更多

 

题目列表(包括答案和解析)

对于数列,如果存在一个正整数,使得对任意的)都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期。例如当是周期为的周期数列,当是周期为的周期数列。

       (1)设数列满足),不同时为0),且数列是周期为的周期数列,求常数的值;

       (2)设数列的前项和为,且

①若,试判断数列是否为周期数列,并说明理由;

②若,试判断数列是否为周期数列,并说明理由;

       (3)设数列满足),,数列 的前项和为,试问是否存在,使对任意的都有成立,若存在,求出的取值范围;不存在,    说明理由;

查看答案和解析>>

对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时,{xn}是周期为1的周期数列,当yn=sin(
π
2
n)
时,{yn}的周期为4的周期数列.
(1)设数列{an}满足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同时为0),且数列{an}是周期为3的周期数列,求常数λ的值;
(2)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由.
(3)设数列{an}满足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,数列{bn}的前n项和Sn,试问是否存在p、q,使对任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范围;不存在,说明理由.

查看答案和解析>>

对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时,{xn}是周期为1的周期数列,当数学公式时,{yn}的周期为4的周期数列.
(1)设数列{an}满足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同时为0),且数列{an}是周期为3的周期数列,求常数λ的值;
(2)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由.
(3)设数列{an}满足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,数列{bn}的前n项和Sn,试问是否存在p、q,使对任意的n∈N*都有数学公式成立,若存在,求出p、q的取值范围;不存在,说明理由.

查看答案和解析>>

对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时,{xn}是周期为1的周期数列,当yn=sin(
π
2
n)
时,{yn}的周期为4的周期数列.
(1)设数列{an}满足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同时为0),且数列{an}是周期为3的周期数列,求常数λ的值;
(2)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由.
(3)设数列{an}满足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,数列{bn}的前n项和Sn,试问是否存在p、q,使对任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范围;不存在,说明理由.

查看答案和解析>>

对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时,{xn}是周期为1的周期数列,当时,{yn}的周期为4的周期数列.
(1)设数列{an}满足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同时为0),且数列{an}是周期为3的周期数列,求常数λ的值;
(2)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由.
(3)设数列{an}满足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,数列{bn}的前n项和Sn,试问是否存在p、q,使对任意的n∈N*都有成立,若存在,求出p、q的取值范围;不存在,说明理由.

查看答案和解析>>

一、选择题:(本大题12个小题,每小题5分,共60分)

CDAB,DABC,CBDA

二、填空题:(本大题4个小题,每小题4分,共16分)

13.0;    14.3;    15.3;     16.10

三、解答题:(本大题6个小题,共74分)

17.(12分)

解:(Ⅰ)由已知等式得:…………(2分)

 ………………(5分)

………………………………………………………………(6分)

(Ⅱ)……………………………………(8分)

……………………(11分)

………………………………………………………………(12分)

18.(12分)

解:由

………………………………(2分)

①当时,;……………………………(6分)

②当时,;…………………………………………(8分)

③当时,。………………………………(11分)

综上,当时,

时,

时,。………………………(12分)

19.(12分)

解:(Ⅰ)

………………………………(7分)

(Ⅱ)

………………………(12分)

20.(12分)

解:设商场分配给超市部、服装部、家电部的营业额依次为万元,万元,万元(均为正整数),由题意得:

………………………………(5分)

由(1),(2)得………………………………(7分)

………………………………(8分)

………………………………(9分)

………………(11分)

答:分配给超市部、服装部、家电部的营业额分别为12万元,22万元,21万元,售货员人数分别为48人,110人,42人;或者分配给三部门的营业额依次为15万元,20万元,20万元,售货员人数分别为60人,100人,40人。……………………(12分)

21.(12分)

解:(Ⅰ)设抛物线顶点为,则抛物线的焦点为,由抛物线的定义可得:

……………………………(6分)

(Ⅱ)不存在。…………………………………………………………(7分)

设过点,斜率为的直线方程为(斜率不存在时,显然不合题意),………………………………………………………………………………(8分)

…………………………(9分)

………………………………………………………(10分)

假设在轨迹上存在两点,令的斜率分别为,则

显然不可能满足

∴轨迹上不存在满足的两点。………………………………(12分)

22.(14分)

(Ⅰ)解:由,可以化为:

………………………………(1分)

从而…………………………………………………………(3分)

又由已知,得:

 ,  即 

∴数列是首项为,公差为的等差数列,…………………………(4分)

……………………(8分)

(Ⅱ)证明:……(9分)

(12分)

(Ⅲ)解:由于,若恒成立

………………………………(14分)

     

 


同步练习册答案