[答案](1)证明从略 (2)四边形ABCD的面积的最小值为命题立意:本题主要考查直线与椭圆的位置关系.注意韦达定理以及基本不等式的运用.考查运用所学知识与方法解决问题的能力 查看更多

 

题目列表(包括答案和解析)

如图所示,四面体被一平面所截,截面是一个平行四边形.求证:

【答案】(理)证明:EH∥FG,EH

EH∥面,又CDEH∥CD, 又EH面EFGH,CD面EFGH

EH∥BD  

【解析】本试题主要是考查了空间四面体中线面位置关系的判定。

要证明线面平行可知通过线线平行,结合判定定理得到结论。

 

查看答案和解析>>

已知正方体ABCD-A1B1C1D1

  O是底面ABCD对角线的交点.

(1)求证:A1C⊥平面AB1D1

(2)求.

【解析】(1)证明线面垂直,需要证明直线垂直这个平面内的两条相交直线,本题只需证:即可.

(2)可以利用向量法,也可以根据平面A1ACC1与平面AB1D1垂直,可知取B1D1的中点E,则就是直线AC与平面AB1D1所成的角.然后解三角形即可.

 

查看答案和解析>>

如图,直线经过⊙上的点,并且交直线,连接

(I)求证:直线是⊙的切线;

(II)若的半径为,求的长.

【解析】(1)证明;(II)根据

两次相似求得。

 

查看答案和解析>>

 设函数,若为函数的一个极值点,则下列图象不可能为的图象是

【答案】D

【解析】设,∴

又∴的一个极值点,

,即

时,,即对称轴所在直线方程为

时,,即对称轴所在直线方程应大于1或小于-1.

 

查看答案和解析>>

【解析】Ti关系如下图:

T

1

i

2

3

4

5

6

【答案】

查看答案和解析>>


同步练习册答案