(2)设的导函数满足.求出的值. 查看更多

 

题目列表(包括答案和解析)

记函数fn(x)=a•xn-1(a∈R,n∈N*)的导函数为
f
n
(x)
,已知
f
3
(2)=12

(Ⅰ)求a的值.
(Ⅱ)设函数gn(x)=fn(x)-n2Inx,试问:是否存在正整数n使得函数gn(x)有且只有一个零点?若存在,请求出所有n的值;若不存在,请说明理由.
(Ⅲ)若实数x0和m(m>0,且m≠1)满足:
f
n
(x0)
f
n+1
(x0)
=
fn(m)
fn+1(m)
,试比较x0与m的大小,并加以证明.

查看答案和解析>>

记函数fn(x)=a·xn-1(a∈R,n∈N*)的导函数为f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)设函数gn(x)=fn(x)-n2ln x,试问:是否存在正整数n使得函数gn(x)有且只有一个零点?若存在,请求出所有n的值;若不存在,请说明理由;
(3)若实数x0和m(m>0且m≠1)满足,试比较x0与m的大小,并加以证明.

查看答案和解析>>

记函数fn(x)=a·xn-1(a∈R,n∈N*)的导函数为f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)设函数gn(x)=fn(x)-n2ln x,试问:是否存在正整数n使得函数gn(x)有且只有一个零点?若存在,请求出所有n的值;若不存在,请说明理由;
(3)若实数x0和m(m>0且m≠1)满足,试比较x0与m的大小,并加以证明.

查看答案和解析>>

已知函数f(x)=ax2+2In(1-x)(a为实数).
(1)若f(x)在[-3,-2 )上是增函数,求实数a的取值范围;
(2)设f(x)的导函数f′(x)满足f′(x)max=1-2
2
,求出a的值.

查看答案和解析>>

已知函数f(x)=lnx,其导函数为f′(x),令φ(x)=f′(x).
(1)设g(x)=f(x+a)+φ(x+a),求函数g(x)的极值;
(2)设Sn=
n
k=1
φ(1+
k
n
),Tn=
n
k=1
φ(1+
k-1
n
),n∈N*

(i)求证:
Sn
n
<ln2

(ii)是否存在正整数n0,使得当n>n0时,都有0<
Sn+Tn
2n
-ln2<
1
8040
成立?若存在,求出一个满足条件的
n0的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案