已知抛物线过点A (4.0). (1)试确定抛物线的解析式及顶点B的坐标, (2)在y轴上确定一点P.使线段AP + BP最短.求出P点的坐标, (3)设M为线段AP的中点.试判断点B与以AP为直径的⊙M的位置关系. 并说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴

向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知

矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).

⑴求cb(用含t的代数式表示);

⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

②求△MPN的面积St的函数关系式,并求t为何值时,S=

③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

 

查看答案和解析>>

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴

向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知

矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).

⑴求cb(用含t的代数式表示);

⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

②求△MPN的面积St的函数关系式,并求t为何值时,S=

③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

 

查看答案和解析>>

(本小题满分12分)
如图,在平面直角坐标系中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知,△ABC的面积,抛物线
经过A、B、C三点。

【小题1】(1)求此抛物线的函数表达式;
【小题2】(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
【小题3】(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴
向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知
矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).
⑴求cb(用含t的代数式表示);
⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积St的函数关系式,并求t为何值时,S=
③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

查看答案和解析>>

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴
向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知
矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).
⑴求cb(用含t的代数式表示);
⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积St的函数关系式,并求t为何值时,S=
③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

查看答案和解析>>


同步练习册答案