16. 一只青蛙在平面直角坐标系上从点(1.1)开始.可以按照如下两种方式跳跃: ①能从任意一点(a.b).跳到点(2a.b)或(a.2b), ②对于点(a.b).如果a>b.则能从(a.b)跳到(a-b.b),如果a<b.则能从(a.b)跳到(a.b-a). 例如.按照上述跳跃方式.这只青蛙能够到达点(3.1).跳跃的一种路径为: →(3.1). 请你思考:这只青蛙按照规定的两种方式跳跃.能到达下列各点吗?如果能.请分别给出从点(1.1)出发到指定点的路径,如果不能.请说明理由. , . 查看更多

 

题目列表(包括答案和解析)

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).

1.(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).

①求当t为多少时,四边形PQAB为平行四边形?(4分)

②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)

2.(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

查看答案和解析>>

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
【小题1】(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?(4分)
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)
【小题2】(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

查看答案和解析>>

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).

1.(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).

①求当t为多少时,四边形PQAB为平行四边形?(4分)

②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)

2.(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

查看答案和解析>>

一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃:
①能从任意一点(a,b),跳到点(2a,b)或(a,2b);
②对于点(a,b),如果a>b,则能从(a,b)跳到(a-b,b);如果a<b,则能从(a,b)跳到(a,b-a).
例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:
(1,1)→(2,1)→(4,1)→(3,1).
请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.
(1)(3,5);(2)(12,60);(3)(200,5);(4)(200,6).

查看答案和解析>>

(本题满分12分)
如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC,

(1)      求点B的坐标;
(2)      点P从C点出发,沿线段CO以1个单位/秒的速度向终点O匀速运动,过点P作PH⊥OC,交折线C-B-O于点H,设点P的运动时间为秒(),
①是否存在某个时刻,使△OPH的面积等于△OBC面积的?若存在,求出 
的值,若不存在,请说明理由;
②以P为圆心,PC长为半径作⊙P,当⊙P与线段OB只有一个公共点时,求的值或的取值范围

查看答案和解析>>


同步练习册答案