题目列表(包括答案和解析)
(本题满分12分)
如图所示,在平面直角坐标系中,顶点为(
,
)的抛物线交
轴于
点,交
轴于
,
两点(点
在点
的左侧),已知
点坐标为(
,
).
![]()
(1)求此抛物线的解析式;
(2)过点
作线段
的垂线交抛物线于点
,
如果以点
为圆心的圆与直线
相切,请判断抛物
线的对称轴
与⊙
有怎样的位置关系,并给出证明;
(3)已知点
是抛物线上的一个动点,且位于
,
两点之间,问:当点
运动到什么位置时,
的
面积最大?并求出此时
点的坐标和
的最大面积.
(本题满分12分)在平面直角坐标系
中,已知二次函数
的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3).
(1)求此二次函数的表达式;
(2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°. 若存在,求出点P的坐标;若不存在,请说明理由;
(3)点K抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由
(本题满分12分)已知二次函数
的图象如图.
(1)求它的对称轴与
轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与
轴,
轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
(本题满分12分)已知二次函数
的图象如图.
(1)求它的对称轴与
轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与
轴,
轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
(本题满分12分)
如图,在平面直角坐标系中,已知抛物线交
轴于
两点,交
轴于点
.
![]()
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交
轴于点E、F两点,求劣弧EF的长;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com