25. 我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段的最小覆盖圆就是以线段为直径的圆. (1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图.保留作图痕迹.不写作法), (2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论, (3)某地有四个村庄.现拟建一个电视信号中转站.为了使这四个村庄的居民都能接收到电视信号.且使中转站所需发射功率最小(距离越小.所需功率越小).此中转站应建在何处?请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)你还记得图形的旋转吗?如图,P是正方形ABCD内一点,

PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,得△CBP.

⑴ 求证:△PBP是等腰直角三角形;

⑵ 猜想△PCP的形状,并说明理由.

 

查看答案和解析>>

(11·西宁)(本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为 (-1,0) .如图17所示,B点在抛物线图象上,过点BBDx轴,垂足为D,且B点横坐标为-3.

(1)求证:△BDC≌△COA

(2)求BC所在直线的函数关系式;

(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴

向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知

矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).

⑴求cb(用含t的代数式表示);

⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

②求△MPN的面积St的函数关系式,并求t为何值时,S=

③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

 

查看答案和解析>>

(本小题满分12分)如图1,已知抛物线经过坐标原点轴上另一点,顶点的坐标为;矩形的顶点与点重合,分别在轴、轴上,且
(1)求该抛物线所对应的函数关系式;
(2)将矩形以每秒1个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动.设它们运动的时间为秒(),直线与该抛物线的交点为(如图2所示).
①当时,判断点是否在直线上,并说明理由;
②设以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴
向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知
矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).
⑴求cb(用含t的代数式表示);
⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积St的函数关系式,并求t为何值时,S=
③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

查看答案和解析>>


同步练习册答案