题目列表(包括答案和解析)
(本小题满分12分)你还记得图形的旋转吗?如图,P是正方形ABCD内一点,
PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,得△CBP,.
![]()
⑴ 求证:△PBP,是等腰直角三角形;
⑵ 猜想△PCP,的形状,并说明理由.
(11·西宁)(本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为
(-1,0) .如图17所示,B点在抛物线
图象上,过点B作BD⊥x轴,垂足为D,且B点横坐标为-3.
(1)求证:△BDC≌△COA;
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
![]()
(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴
向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知
矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).
⑴求c、b(用含t的代数式表示);
⑵当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时,S=
;
③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.
![]()
(本小题满分12分)如图1,已知抛物线经过坐标原点
和
轴上另一点
,顶点
的坐标为
;矩形
的顶点
与点
重合,
分别在
轴、
轴上,且
,
.
(1)求该抛物线所对应的函数关系式;
(2)将矩形
以每秒1个单位长度的速度从图1所示的位置沿
轴的正方向匀速平行移动,同时一动点
也以相同的速度从点
出发向
匀速移动.设它们运动的时间为
秒(
),直线
与该抛物线的交点为
(如图2所示).
①当
时,判断点
是否在直线
上,并说明理由;
②设以
为顶点的多边形面积为
,试问
是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com