题目列表(包括答案和解析)
x2 |
a2 |
y2 |
b2 |
2 |
2
| ||
3 |
a2 |
c |
x2 |
a2 |
y2 |
b2 |
2 |
一、选择题:1~12(5×12=60)
题号
01
02
03
04
05
06
07
08
09
10
11
12
答案
B
B
A
B
C
D
B
C
B
C
C
D
二、填空题:13、B;14、-;15、32005;16、(2-2,2)。
三、解答题:
17.解:(1)根据已知条件得:△=16sin2θ-4atanθ=0
即:a=2sin2θ 2分
又由已知:
得 4分
所以有0<sin2θ<1
所以a∈(0,2) 6分
(2)当a=时由(1)得2sin2θ= 8分
所以sinθ=,而sin2θ=-cos(+2θ)
=-2cos2()+1= 10分
所以cos2()=,又
所以cos()=- 12分
18.(九A解法)解:(1)取AC、CC1中点分别为M、N,连接MN、NB1、MB1,
∵AC1∥MN,NB1∥CE
∴∠MNB1是CE与AC1成角的补角 2分
Rt△NB
Rt△MNC中,MN=6
Rt△MBB1中,MB1=
∴cos∠MNB1=-
∴CE与AC1的夹角为arccos 4分
(2)过D作DP∥AC交BC于P,则A1D在面BCC1B1上的射影为C1P,而CE⊥A1D,由三垂线定理的逆定理可得CE⊥C1P,又BCC1B为正方形
∴P为BC中点,D为AB中点, 6分
∴CD⊥AB,CD⊥AA1
∴CD⊥面ABB
(3)由(2)CD⊥面A1DE
∴过D作DF⊥A1E于F,连接CF
由三垂线定理可知CF⊥A1E
∴∠CFD为二面角C-A1E-D的平面角 10分
又∵A1D=
∴A1D2+DE2=A1E2=324
∴∠A1DE=90°
∴DF=6,又CD=6
∴tan∠CFD=1
∴∠CFD=45°
∴二面角C-A1E-D的大小为45° 12分
(此题也可通过建立空间直角坐标系,运用向量的方法求解)
19.解:由已知得:
不等式x2+px-4x-p+3>0,在p∈[0,4]上恒成立
即:p(x-1)+x2-4x+3>0,在p∈[0,4]上恒成立
令f(p)=p(x-1)+x2-4x+3
则有函数f(p)在p∈[0,4]上大于零恒成立。 4分
(1)显然当x=1时不恒成立
(2)当x≠1时,有即x>3或x<-1 10分
所以x∈(3+∞)U(-∞,-1)为所求 12分
20.解:(1)ξ=0、1、2、3
P(ξ=0)=
P(ξ=1)=
P(ξ=2)=
P(ξ=3)=
∴Eξ=1× 6分
(2)设甲考试合格为事件A,乙考试合格为事件B,A、B为相互独立事件
P(A)=P(ξ=2)+P(ξ=3)=
P(B)=
甲、乙两人均不合格为事件
p()=[1-P(A)][1-P(B)]=
∴甲、乙两人至少有一人合各的概率为 12分
21.解:(1)∵AB方程是y=3x+1,则
得(1+
∴x A =-,同理BC方程是y=-
可得xc= 2分
∴|AB|=|xA-0|?
|BC|=|xc-0|? 4分
∵|AB|=|BC|
∴=解得a2=
∴椭圆方程为 6分
(2)设AB:y=kx+1(不妨设k>0且k≠1)代入
整理得(1+a2k2)x2+a2kx=0
∴xA=-,同理xc= 8分
∴|AB|=,
|BC|=
又|AB|=|BC|
∴整理得
(k-1)[k2+(1-a2)k+1]=0 (k≠1)
∴k2+(1-a2)k+1=0 10分
∴△=(1-a2)2-4≥0,解得a≥
若△=0,则a=,此时k2+[1-()2]k+1=0
k1=k2=1与k≠1矛盾,故a>. 12分
22.解:(1)由已知有f′(x)=2n
令f′(x)=0
得x=± 2分
∵x∈[0,+∞],∴x=
∵0<x<时f′(x)<0
X>时f′(x)>0
∴当x=时,fmin(x)=an=2n
= 5分
(2)由已知Tn=cos
= 7分
∵ 9分
∴π>
又y=cosx在(0,π)上是减函数
∴Tn是递增的
∴Tn<Tn+1(n∈N*) 10分
(3)不存在
由已知点列An(2n,),显然满足y2=x2-1,(x=2n) 12分
即An上的点在双曲线x2-y2=1上,且在第一象限内
∴任意三点An、Am、Ap连线的斜率KAnAm,KAnAp,KAmAp均为正值。
∴任意两个量的乘积不可能等于-1
∴三角形AnAmAp三个内角均无直角
∴不可能组成直角三角形。 14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com