题目列表(包括答案和解析)
(本题满分9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交与点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.
(1)求此抛物线的解析式及顶点D的坐标;
(2)问点P在何处时,线段PQ最长,最长为多少?
(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.
(本题满分12分)学完二次函数后,同学们对二次函数的图象抛物线产生了浓厚兴趣,在一次数学实验课上,孔明同学用一把宽3 cm且带刻度的矩形直尺对抛物线进行了如下测量:
①量得OA=3 cm;
②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图①),测得抛物线与直尺右边的交点C的刻度读数为4.5.
请完成下列问题:
1.(1)求抛物线的对称轴.
2.(2)求抛物线所对应的函数关系式.
3.(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图②),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S梯形EFGH=
(EF2-9).
![]()
1. (本题满分7分)
将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(–3,0).
![]()
1.(1)求该抛物线的解析式;
2.(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
3.(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.
(本题满分10分)如图,在平面直角坐标系
中,把抛物线
向左平移1个单位,再向下平移4个单位,得到抛物线
.所得抛物线与
轴交于
两点(点
在点
的左边),与
轴交于点
,顶点为
.
(1)写出
的值;
(2)判断
的形状,并说明理由;
(3)在线段
上是否存在点
,使
∽
?若存在,求出点
的坐标;若不存在,说明理由.
![]()
(本题满分9分)
如图,以为顶点的抛物线与
轴交于点
.已知
、
两点坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设是抛物线上的一点(
、
为正整数),且它位于对称轴的右侧.若以
、
、
、
为顶点的四边形四条边的长度是四个连续的正整数,求点
的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点,
是否总成立?请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com