题目列表(包括答案和解析)
(本题满分12分)
已知点C为线段AB上一点, 分别以AC、BC为边在线段AB同侧作△ACD和△BCE, 且CA=CD, CB=CE, ∠ACD=∠BCE, 直线AE与BD交于点F.
![]()
(1)如图1,求证:△ACE≌△DCB。
(2)如图1, 若∠ACD=60°, 则∠AFB= ;
如图2, 若∠ACD=90°, 则∠AFB= ;
(3)如图3, 若∠ACD=β, 则∠AFB= (用含β的式子表示)
并说明理由。
(本题满分10分)
已知:如图,在△ABC中,D为BC的中点,过D点的直线GF
交AC于F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连结EG.
(1)求证BG=CF;
(2)试猜想BE+CF与EF的大小关系,并加以证明.![]()
(本题满分10分)
已知:如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连结EG.
(1)求证BG=CF;
(2)试猜想BE+CF与EF的大小关系,并加以证明.
![]()
(本题满分12分)已知AB是⊙O的一条弦,CD是⊙O的直径,CD⊥AB,垂足为K.现取一块三角板,把它的一个锐角顶点固定在点C处,该锐角的两边(从左到右)与直线AB和圆分别相交于E、F和G、H.
![]()
1.(1) 若∠C的一边过圆心,请选择图10-1或图10-2所示,求证: △CEF∽△CHG;
2.(2) 若∠C的边不过圆心,在图10-3中补全一种示意图,请你观察所画的图形,并判断(1)中的结论是否仍然成立?若成立,给予证明;若不成立,请说明理由.
(11·台州)(14分)已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为
点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直
线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com