题目列表(包括答案和解析)
(本小题满分12分)
已知点
是椭圆E:
(a > b > 0)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
求椭圆E的方程;
设A、B是椭圆E上两个动点,是否存在λ,满足
(0<λ<4,且λ≠2),且M(2,1)到AB的距离为
?若存在,求λ值;若不存在,说明理由.
本小题满分12分)
已知点P(4,4),圆C:
与椭圆E:![]()
有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(Ⅰ)求m的值与椭圆E的方程;
(Ⅱ)Q为椭圆E上的一个动点,求
的取值范围.
w.
(本小题满分12分) 已知点A(1,1)是椭圆
上一点,F1,F2是椭圆的两焦点,且满足
(I)求椭圆的两焦点坐标; (II)设点B是椭圆上任意一点,如果|AB|最大时,求证A、B两点关于原点O不对称;
(本小题满分12分) 已知椭圆
的离心率
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切。(I)求a与b;(II)设椭圆的左,右焦点分别是F1和F2,直线
且与x轴垂直,动直线
轴垂直,
于点P,求线段PF1的垂直平分线与
的交点M的轨迹方程,并指明曲线类型。
二、13. 3 14.4 15. 16.
三、解答题
17.解:(I)∵(2a-c)cosB=bcosC,
∴(2sinA-sinC)cosB=sinBcosC. …………………2分
即2sinAcosB=sinBcosC+sinCcosB
=sin(B+C)
∵A+B+C=π,∴2sinAcosB=sinA ………………………4分
∵0<A<π,∴sinA≠0.
∴cosB= …………………………………………5分
∵0<B<π,∴B= ………………………………………6分
(II)=4ksinA+cos2A. ……………………………………7分
=-2sin2A+4ksinA+1,A∈(0,)……………………………………9分
设sinA=t,则t∈.
则=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.…………………………10分
∵k>1,∴t=1时,取最大值.
依题意得,-2+4k+1=5,∴k=.………………………………………………12分
18. 解:设某一粒种子成功发芽为事件A,某一粒种子发生基因突变为事件B则其概率分别是
P(A)=,P(B)= ……………………2分
(1)这种“太空种子”中的某一粒种子既发芽又发生基因突变的概率
……………………7分
(2)四粒这种“太空种子”中至少有两粒既发芽又发生基因突变的概率是 …………………12分
19.解:(!)由已知可得
当时,两式相减得
即.当时,得
,从而,故总有,,
又从而,即数列是以6为首项,2为公比的等比数列.
则. ………6分
(2)由(1)知,, ………8分
从而则
………12分
则由题意得EF∥DA1,且EF=DA1,
∴四边形EFDA1是平行四边形
∴A1E∥FD,又A1E平面BDC1,FD平面BDC1
∴A1E∥平面BDC1 …6分
(2)由A1E⊥B1C1,A1E⊥CC1,得A1E⊥平面CBB1C1,过点E作
EH⊥BC1于H,连结A1H,则∠A1HE为二面角A1-BC1-B1的平面角 …8分
在Rt△BB1C1中,由BB1=8,B1C1=4,得BC1边上的高为,∴EH=,
又A1E=2,∴tan∠A1HE==>∴∠A1HE>60°, …11分
∴M在棱AA1上时,二面角M-BC1-B1总大于60°,故棱AA1上不存在使二面角M-BC1-B1的大小为60°的点M. …12分
D(2,40),A1(2,8,0), C1(0,8,2),B1(-2,8,0), E(-1,8,),
=(-4,-4,0), =(-2,4,2),=(-3,0, ),
=(-4,-8, 0), =(-2,0, 2),=(0,8,0),
=(2,8, 2).
(1)证明:∵=2(+)∴A1E∥平面BDC1 …6分
(2)设=(x,y,1)为平面A1BC1的一个法向量,则,且,即解得∴=(,,1),同理,设=(x,y,1)为平面B1BC1的一个法向量,则,且,即解得∴=(-,0,1),∴cos<,>==-
∴二面角A1-BC1-B1为arccos. 即arctan,又∵>
∴二面角A1-BC1-B1大于60°, ∴M在棱AA1上时,二面角M-BC1-B1总大于60°,故棱AA1上不存在使二面角M-BC1-B1的大小为60°的点M. ………… 12分
21解:(1)易知, ……………………………1分
所以,设,则
……4分
因为,故当时,即点P为椭圆短轴端点时,有最小值-2,
当时,即点P为椭圆长轴端点时,有最大值1. ……………………6分
(2)显然直线不满足题设条件; … …………………………7分
可设直线:,,
联立,消去整理得,
,
由得 ① ………9分
又,则又,
又
=,,
② ……………11分
故由①②得的取值范围是 .………………12分
22.(文)解:(1),由题意得,解得,经检验满足条…4分
(2)由(1)知,,………5分
令,则,(舍去).
的变化情况如下表:
x
-1
(-1,0)
0
(0,1)
1
-
0
+
-1
ㄋ
-4
ㄊ
-3
∴在上单调递减,在上单调递增,
∴,如图构造在上的图象.
又关于x的方程在上恰有两个不同的实数根,
则,即m的取值范围是. ………8分
(3)解法一:因存在,使得不等式成立,
故只需要的最大值即可,
∵,∴.………………………10分
①若,则当时,,在单调递减.
,∴当时,,
∴当时,不存在,使得不等式成立.……………12分
②当a>0时随x的变化情况如下表:
x
+
0
-
ㄊ
ㄋ
∴当时,,由得.
综上得a>3,即a的取值范围是(3,+∞). … ………………………………14分
解法二:根据题意,只需要不等式在上有解即可,即在上有解. 即不等式在上有解即可. …………………………………10分
令,只需要 ………12分
而,当且仅当,即时“=”成立.
故a>3,即a的取值范围是(3,+∞). ………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com