(2)证明数列是等差数列, 查看更多

 

题目列表(包括答案和解析)

等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2S2=64,{ban}是公比为64的等比数列.
(1)求{an}与{bn};
(2)证明:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

等差数列{an}的公差d不为零,首项a1=1,a2是a1和a5的等比中项.
(1)求数列{an}的通项公式及前n项和Sn
(2)证明数列{2an}为等比数列;
(3)求数列{
1anan+1
}
的前n项和Tn

查看答案和解析>>

等差数列{ an}中a3=7,a1+a2+a3=12,记Sn为{an}的前n项和,令bn=anan+1,数列{
1
bn
}的前n项和为Tn
(1)求an和Sn
(2)求证:Tn
1
3

(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

等差数列{an}中,a1,a2,a3分别是下表第一、二、三列中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一行.
第一列 第二列 第三列
第一行 -3 3 1
第二行 5 0 2
第三行 -1 2 0
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=
an+2
2n
,设数列{bn}的前n项和Sn(n∈N*),证明:Sn<2.

查看答案和解析>>

等差数列{an}中a3=7,a1+a2+a3=12,记为{an}的前n项和,令bn=anan+1,数列的前n项和为Tn.(1)求an和Sn; (2)求证:Tn<;(3)是否存在正整数m , n ,且1<m<n ,使得T1 , Tm , Tn成等比数列?若存在,求出m ,n的值,若不存在,说明理由.

查看答案和解析>>

一、填空题:中国数学论坛网 http://www.mathbbs.cn 2008年03月18日正在开通

1.2   2.4   3.3   4.   5.12   6.―2   7.   8.   9.18

2,4,6

二、选择题:

13.C   14.D   15.A   16.B

三、解答题:

17.解:设的定义域为D,值域为A

    由                                                         …………2分

                        …………4分

    又                                                    …………6分

                                                          …………8分

    的定义域D不是值域A的子集

    不属于集合M                                                             …………12分

18.解:(1)VC―PAB=VP―ABC

                                      …………5分

   (2)取AB中点D,连结CD、PD

    ∵△ABC是正三角形 ∴CD⊥AB

PA⊥底面ABC,∴CD⊥AP,∴CD⊥平面PAB

∠CPD是PC与平面PAB所成的角                                          …………8分

                                                         …………11分

∴PC与平面PAB所成角的大小为                          …………12分

19.解:(1)                                             …………2分

                             …………4分

               …………6分

   (2)设                                        …………8分

  …………10分

(m2)      …………12分

答:当(m2)   …………14分

20.解:(1)=3

                                                                …………2分

设圆心到直线l的距离为d,则

即直线l与圆C相离                                                   …………6分

   (2)由  …………8分

由条件可知,                                        …………10分

又∵向量的夹角的取值范围是[0,π]

                                                           …………12分

                                                       …………14分

21.解:(1)                       …………2分

                …………4分

   (2)由

                            …………6分

                                                                              …………9分

   是等差数列                                                        …………10分

   (3)

   

                         …………13分

                   …………16分

22.解:(1)∵直线L过椭圆C右焦点F

                                                   …………2分

    即

    ∴椭圆C方程为                                                  …………4分

   (2)记上任一点

   

    记P到直线G距离为d

    则                                                   …………6分

   

                                                             …………10分

   (3)直线L与y轴交于    …………12分

    由

                                                                        …………14分

    又由

         同理                                                        …………16分

   

                                                                        …………18分