(3)曲线方程为已知矩阵A.求A. 20080925 查看更多

 

题目列表(包括答案和解析)

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

福州八中2006级高中数学选修4-2模块考试

 

一、选择题    BDAC

二、填空题

20080925

三、解答题

7.解:(1)变换后的方程仍为直线,该变换是恒等变换.(3分)

(2)经过变化后变为(-2,5),它们关于y轴对称,故该变换为关于y轴的反射变换.

(6分)

(3)所给方程是以原点为圆心,2为半径的圆,设A(x,y)为曲线上的任意一点,经过

变换后的点为A1(x1,y1),则

将之代入到可得方程,此方程表示椭圆,所给方程表示的是圆,

该变换是伸缩变换.(10分)

8.解:特征矩阵为.(1分)

特征多项式为

0,解得矩阵A的特征值=0,,(2分)

0代入特征矩阵得

以它为系数矩阵的二元一次方程组是

解之得可以为任何非零实数,不妨取,于是,是矩阵A属于

特征值的一个特征向量.

再将代入特征矩阵得

以它为系数矩阵的二元一次方程组是

解之得可以为任何非零实数,不妨取,于是,是矩阵A的属于特征值的一个特征向量.(6分)

解得 .(9分)

所以,A.(10分)

福州八中2006级高中数学选修4-5模块考试

一、选择题   BACD

二、填空题

5.      6.15

三、解答题

7.证法一:(作差比较法)∵=,又且a、b∈R+

∴b>a>0.又x>y>0,∴bx>ay. ∴>0,即.

证法二:(分析法)

(分段函数3分,图象3分,共6分)

(10分)

 

(10分)

第Ⅱ卷

一、选择题  BCAD

二、填空题

5.    6.

三、解答题

7.解:(Ⅰ)由f(0)=,得2a-=,∴2a=,则a=.由

f()=,得+-=,∴b=1,2分  ∴f(x) =cos2x+sinxcosx -=cos2x+sin2x=sin(2x+).………4分

(Ⅱ)由f(x)=sin(2x+)又由+2kπ≤2x++2kπ,得+kπ≤x≤+kπ,

∴f(x)的单调递增区间是[+kπ,+kπ](k∈Z).?…………8分

(Ⅲ)∵f(x)=sin2(x+),∴函数的图象右移后对应的函数可成为奇函数.10分

高三数学(理)第一次质量检查试卷 第3页 共4页                                              高三数学(理)第一次质量检查试卷 第4页 共4页

                            …………1分

的等比中项为   ……………2分

  ……………3分

                          ………………4分

(2)          ………………5分

是以为首项,1为公差的等差数列                         ………………6分

                                          ………………7分

(3)由(2)知

………………9分

               …………………10分