(Ⅲ)函数的图象经过怎样的平移可使其对应的函数成为奇函数? 查看更多

 

题目列表(包括答案和解析)

函数的图象经过怎样的变换可以得到的图象(       )

A、向左平移1个单位,再向下平移1个单位 B、向左平移1个单位,再向上平移1个单位

C、向右平移1个单位,再向上平移1个单位 D、向右平移1个单位,再向下平移1个单位

查看答案和解析>>

已知函数数学公式的图象,它与y轴的交点为(数学公式),它在y轴右侧的第一个最大值点和最小值点分别为(x0,3),(x0+2π,-3).
(1)求函数y=f(x)的解析式;
(2)求这个函数的单调递增区间和对称中心.
(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

已知函数的图象,它与y轴的交点为(),它在y轴右侧的第一个最大值点和最小值点分别为(x,3),(x+2π,-3).
(1)求函数y=f(x)的解析式;
(2)求这个函数的单调递增区间和对称中心.
(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

已知函数的图象,它与y轴的交点为(),它在y轴右侧的第一个最大值点和最小值点分别为(x,3),(x+2π,-3).
(1)求函数y=f(x)的解析式;
(2)求这个函数的单调递增区间和对称中心.
(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

函数y=sin2x的图象可以由y=sin(2x+
3
)的图象经过怎样的平移变换得到(  )
A、向左平移
3
个单位长度
B、向右平移
π
3
个单位长度
C、向右平移
π
6
个单位长度
D、向左平移
π
3
个单位长度

查看答案和解析>>

福州八中2006级高中数学选修4-2模块考试

 

一、选择题    BDAC

二、填空题

20080925

三、解答题

7.解:(1)变换后的方程仍为直线,该变换是恒等变换.(3分)

(2)经过变化后变为(-2,5),它们关于y轴对称,故该变换为关于y轴的反射变换.

(6分)

(3)所给方程是以原点为圆心,2为半径的圆,设A(x,y)为曲线上的任意一点,经过

变换后的点为A1(x1,y1),则

将之代入到可得方程,此方程表示椭圆,所给方程表示的是圆,

该变换是伸缩变换.(10分)

8.解:特征矩阵为.(1分)

特征多项式为

0,解得矩阵A的特征值=0,,(2分)

0代入特征矩阵得

以它为系数矩阵的二元一次方程组是

解之得可以为任何非零实数,不妨取,于是,是矩阵A属于

特征值的一个特征向量.

再将代入特征矩阵得

以它为系数矩阵的二元一次方程组是

解之得可以为任何非零实数,不妨取,于是,是矩阵A的属于特征值的一个特征向量.(6分)

解得 .(9分)

所以,A.(10分)

福州八中2006级高中数学选修4-5模块考试

一、选择题   BACD

二、填空题

5.      6.15

三、解答题

7.证法一:(作差比较法)∵=,又且a、b∈R+

∴b>a>0.又x>y>0,∴bx>ay. ∴>0,即.

证法二:(分析法)

(分段函数3分,图象3分,共6分)

(10分)

 

(10分)

第Ⅱ卷

一、选择题  BCAD

二、填空题

5.    6.

三、解答题

7.解:(Ⅰ)由f(0)=,得2a-=,∴2a=,则a=.由

f()=,得+-=,∴b=1,2分  ∴f(x) =cos2x+sinxcosx -=cos2x+sin2x=sin(2x+).………4分

(Ⅱ)由f(x)=sin(2x+)又由+2kπ≤2x++2kπ,得+kπ≤x≤+kπ,

∴f(x)的单调递增区间是[+kπ,+kπ](k∈Z).?…………8分

(Ⅲ)∵f(x)=sin2(x+),∴函数的图象右移后对应的函数可成为奇函数.10分

高三数学(理)第一次质量检查试卷 第3页 共4页                                              高三数学(理)第一次质量检查试卷 第4页 共4页

                            …………1分

的等比中项为   ……………2分

  ……………3分

                          ………………4分

(2)          ………………5分

是以为首项,1为公差的等差数列                         ………………6分

                                          ………………7分

(3)由(2)知

………………9分

               …………………10分