题目列表(包括答案和解析)
| a1b1+a2b2+…+anbn |
| n |
| a1+a2+…+an |
| n |
| b1+b2+…+bn |
| n |
| a1b1+a2b2+…+anbn |
| n |
| a1+a2+…+an |
| n |
| b1+b2+…+bn |
| n |
已知函数
其中
为自然对数的底数,
.(Ⅰ)设
,求函数
的最值;(Ⅱ)若对于任意的
,都有
成立,求
的取值范围.
【解析】第一问中,当
时,
,
.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵
,
,
∴原不等式等价于:
,
即
, 亦即![]()
分离参数的思想求解参数的范围
解:(Ⅰ)当
时,
,
.
当
在
上变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
时,
,
.
(Ⅱ)∵
,
,
∴原不等式等价于:
,
即
, 亦即
.
∴对于任意的
,原不等式恒成立,等价于
对
恒成立,
∵对于任意的
时,
(当且仅当
时取等号).
∴只需
,即
,解之得
或
.
因此,
的取值范围是![]()
已知函数
,
(1)求函数
的定义域;
(2)求函数
在区间
上的最小值;
(3)已知
,命题p:关于x的不等式
对函数
的定义域上的任意
恒成立;命题q:指数函数
是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
【解析】第一问中,利用由
即![]()
![]()
第二问中,
,
得:
![]()
,
![]()
第三问中,由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时,![]()
当命题p为假,命题q为真时,
,
所以![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com