中的时.设.讨论在内的单调性并求极值.点评:本小题主要考查函数的概念.导数运用.函数的单调区间和极值等知识.考查运用数学知识解决问题及推理能力.㈣利用导数研究函数的单调性 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,矩形ABCD中,M是AD的中点.
(1)求证:△ABM≌△DCM;
(2)请你探索,当矩形ABCD中的一组邻边满足何种数量关系时,有BM⊥CM成立,说明你的理由.

查看答案和解析>>

精英家教网甲、乙两个水池同时放水,其水面高度(水面离池底的距离)h(米)与时间t(小时)之间的关系如图所示(甲、乙两个水池底面相同).
(1)在哪一段时间内,乙池的放水速度快于甲池的放水速度?
(2)求点P的坐标,由此得到什么结论?
(3)当一个池中的水先放完时,另一个池中水面的高度是多少米?

查看答案和解析>>

(2012•大兴区一模)阅读下列材料:
小明遇到一个问题:已知:如图1,在△ABC中,∠BAC=120°,∠ABC=40°,试过△ABC的一个顶点画一条直线,将此三角形分割成两个等腰三角形.
他的做法是:如图2,首先保留最小角∠C,然后过三角形顶点A画直线交BC于点D.将∠BAC分成两个角,使∠DAC=20°,△ABC即可被分割成两个等腰三角形.
喜欢动脑筋的小明又继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.
他的做法是:如图3,先画△ADC,使DA=DC,延长AD到点B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB=∠ABC,因为∠CDB=2∠A,所以∠ABC=2∠A.于是小明得到了一个结论:
当三角形中有一个角是最小角的2倍时,则此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.
请你参考小明的做法继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.请直接写出你所探究出的另外两条结论(不必写出探究过程或理由).

查看答案和解析>>

精英家教网如图,当圆形桥孔中的水面宽度AB为8米时,弧ACB恰为半圆.当水面上涨1米时,桥孔中的水面宽度A′B′为(  )
A、
15
B、2
15
C、2
17
D、不能计算

查看答案和解析>>

如图,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点.
(1)现有四个等式:①∠ADE=∠CBF;②∠ABE=∠CDF;③AE=CF;④DE=BF.当点E、F只能满足上述等式中的
①④
①④
时,四边形DEBF
不一定•  •  •
是平行四边形.(只填序号)
(2)请选择(1)中的一个等式作为条件,证明四边形DEBF为平行四边形.

查看答案和解析>>


同步练习册答案