例2 对于平面和共面的直线m.n.下列命题中真命题是 查看更多

 

题目列表(包括答案和解析)

如图是2007年11月份的日历牌,我们在日历牌中用两种不同的方式选择四个数.

(1)从甲中选择构成的“矩形”中发现:11×5-12×4=7,即对角线上两数积的差为7.请你平移矩形甲,使它的四个顶点落在其他的四个数上,对角线上的两数积的差还为7吗?
(2)对乙中选择构成的“平行四边形”顶点处的四个数字,按上述方法计算和平移,你又能得出什么结论?
(3)由第(1)(2)小题得出的这些规律是否具有一般性?如果你认为不具有一般性,请举反例:如果你认为具有一般性,请假设所选择的某个数为n,然后通过含n的代数式的运算加以说明.

查看答案和解析>>

(2007•海淀区二模)例.如图①,平面直角坐标系xOy中有点B(2,3)和C(5,4),求△OBC的面积.
解:过点B作BD⊥x轴于D,过点C作CE⊥x轴于E.依题意,可得
S△OBC=S梯形BDEC+S△OBD-S△OCE
=
1
2
(BD+CE)(OE-OD)+
1
2
OD•BD-
1
2
•OE•CE

=
1
2
×(3+4)×(5-2)+
1
2
×2×3-
1
2
×5×4=3.5.
∴△OBC的面积为3.5.
(1)如图②,若B(x1,y1)、C(x2,y2)均为第一象限的点,O、B、C三点不在同一条直线上.仿照例题的解法,求△OBC的面积(用含x1、x2、y1、y2的代数式表示);
(2)如图③,若三个点的坐标分别为A(2,5),B(7,7),C(9,1),求四边形OABC的面积.

查看答案和解析>>

(2007•遵义)“福建之星”选拔赛在福州举行,评分规则是:去掉7位评委的一个最高分和一个最低分,其平均分为选手的最后得分.下表是7位评委给某位选手的评分情况:
 评委 1号 2号3号 4号 5号  6号 7号
 评分 9.3 9.4 9.8 9.6 9.2 9.7 9.5
请问这位选手的最后得分是   

查看答案和解析>>

(2007•陕西)2006年,全国30个省区市在我省有投资项目,投资金额如下表:
省区市广东福建北京浙江其它
金额(亿元)124676647119
根据表格中的信息解答下列问题:
(1)求2006年外省区市在陕投资总额;
(2)补全图①中的条形统计图;
(3)2006年,外省区投资中有81亿元用于西安高新技术产业开发区,54亿元用于西安经济技术开发区,剩余资金用于我省其它地区.请在图②中画出外省区市在我省投资金额使用情况的扇形统计图.(扇形统计图中的圆心角精确到1°,百分比精确到1%)

查看答案和解析>>

(2007•巴中)先阅读下列材料,然后解答问题:
从A,B,C三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作C23==3.
一般地,从m个元素中选取n个元素组合,记作:Cnm=
例:从7个元素中选5个元素,共有C57=种不同的选法.
问题:从某学习小组10人中选取3人参加活动,不同的选法共有    种.

查看答案和解析>>


同步练习册答案