(Ⅱ)若是上的不同两点.是坐标原点.求的最小值.点评:考查双曲线的定义.以及利用代数的方法―坐标法解决几何问题.会转化为函数的最值.又考查分类讨论的思想和函数思想. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+精英家教网b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2.
(1)求直线AC及抛物线的函数表达式;
(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标;
(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切.

查看答案和解析>>

在平面直角坐标系中,有一个矩形ABCD,四个顶点的坐标分别为:A(4,0)、B(4,2)、C(8,2)、D(8,0),并且有两个动点P和Q.P从原点O出发,沿x轴正方向运动;Q从A点出发,沿折线A-B-C-D方向在矩形的边上运动,且两点的运动速度均为每秒2个单位.当Q到达D点时,P也随之停止.设运动的时间为x.
(1)分别求出当x=1和x=3时,对应的△OPQ的面积;
(2)设△OPQ的面积为y,分别求出不同时段,y关于x的函数解析式,注明自变量的取值范围.并求出在整个运动过程中,△OPQ的面积的最大值;
(3)在P、Q运动过程中,是否存在两个时刻x1和x2,使得构成相应的△OP1Q1和△OP2Q2相似?若存在,直接写出这两个时刻,并证明两个三角形相似;若不存在,请说明理由.
精英家教网

查看答案和解析>>

在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(6,0),若将经过B、C两点的直线y=mx+n沿y轴向下平移6则恰好经过原点,且抛物线的对称轴是直线x=4.
(1)求抛物线及直线BC的解析式;
(2)如果P是线段BC上一点,设△ABP、△ACP的面积分别是S△ABP、S△ACP,且S△ABP=数学公式S△ACP,求点P的坐标;
(3)设⊙Q的半径为2,圆心Q在抛物线上运动.则在运动过程中,是否存在圆Q与坐标轴相切的情况,若存在,请求出圆心Q的坐标,若不存在,请说明理由.
(4)在(3)的情况下,设⊙Q的半径为r,是否存在与两坐标轴同时相切的圆,若存在,求出半径r的值,若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,A、B为反比例函数数学公式(x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将数学公式(x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.
(1)求旋转后的图象解析式;
(2)求A′、B′点的坐标;
(3)连接AB′、动点M从A点出发沿线段AB'以每秒1个单位长度的速度向终点B′运动;动点N同时从B′点出发沿线段B′A′以每秒1个单位长度的速度向终点A′运动,当其中一个点停止运动时另一个点也随之停止运动.设运动的时间为t秒,试探究:是否存在使△MNB'为等腰直角三角形的t值,若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2.
(1)求直线AC及抛物线的函数表达式;
(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标;
(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切.

查看答案和解析>>


同步练习册答案