即当时不等式成立. 查看更多

 

题目列表(包括答案和解析)

已知基本不等式:(a、b都是正实数,当且仅当a=b时等号成立)可以推广到n个正实数的情况,即对于n个正实数a1,a2,a3,…,an,有(当且仅当a1=a2=a3=…=an时,取等号).

同理,当a、b都是正实数时,(a+b)()≥2ab·2·=4,可以推导出结论:对于n个正实数a1,a2,a3,…,an有(a1+a2+a3)()≥________;(a1+a2+a3+a4)()≥________;(a1+a2+a3+…+an)(+…)≥________;

如果对于n个同号实数a1,a2,a3,…,an(同正或者同负),那么,根据上述结论,(a1+a2+a3+…+an)(+…)的取值范围是________.

查看答案和解析>>

 已知命题及其证明:

(1)当时,左边=1,右边=所以等式成立;

(2)假设时等式成立,即成立,

则当时,,所以时等式也成立。

由(1)(2)知,对任意的正整数n等式都成立。      

经判断以上评述

A.命题、推理都正确      B命题不正确、推理正确 

C.命题正确、推理不正确      D命题、推理都不正确

 

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

设向量
α
=(a,b),
β
=(m,n),其中a,b,m,n∈R,由不等式|
α
β
|≤|
α
|
•|
β
|恒成立,可以证明(柯西)不等式(am+bn)2≤(a2+b2)(m2+n2)(当且仅当
α
β
,即an=bm时等号成立),己知x,y∈R+,若
x
+3
y
<k•
x+y
恒成立,利用柯西不等式可求得实数k的取值范围是
 

查看答案和解析>>

对于不等式某同学应用数学归纳法证明的过程如下:
(1)当时,,不等式成立
(2)假设时,不等式成立,即
那么时,

不等式成立根据(1)(2)可知,对于一切正整数不等式都成立。上述证明方法(    )
A.过程全部正确B.验证不正确
C.归纳假设不正确D.从的推理不正确

查看答案和解析>>


同步练习册答案