所以数据在[1,4)∪[7,16)内的频率为. 查看更多

 

题目列表(包括答案和解析)

某市2009年初拥有汽车40万量,每年年终将有当年汽车总量的5%报废,在第二年年初又将有一部分新车上牌,但为了保持该市空气质量,需要该市的汽车拥有量不超过60万量,故该市采取限制新上牌车辆数的措施进行控制,所以该市每年只有b万辆新上牌车.
(1)求第n年年初该市车辆总数an(2010年为第一年);
(2)当b=4时,试问该项措施能否有效?若有效,说明理由;若无效,请指出哪一年初开始无效.
(参考数据:lg2=0.30,lg3=0.48,lg19=1.28,lg21=1.32)

查看答案和解析>>

若数列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).请按照要求完成下列各题,并将答案填在答题纸的指定位置上.
(1)可考虑利用算法来求am,bm的值,其中m为给定的数据(m≥2,m∈N).右图算法中,虚线框中所缺的流程,可以为下面A、B、C、D中的
ACD
ACD

(请填出全部答案)
A、B、
C、D、

(2)我们可证明当a≠b,5a≠4b时,{an-bn}及{5an-4bn}均为等比数列,请按答纸题要求,完成一个问题证明,并填空.
证明:{an-bn}是等比数列,过程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0为首项,以
3
3
为公比的等比数列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0为首项,以
2
2
为公比的等比数列
(3)若将an,bn写成列向量形式,则存在矩阵A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,请回答下面问题:
①写出矩阵A=
-24
-57
-24
-57
;  ②若矩阵Bn=A+A2+A3+…+An,矩阵Cn=PBnQ,其中矩阵Cn只有一个元素,且该元素为Bn中所有元素的和,请写出满足要求的一组P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
Q=
1
1
; ③矩阵Cn中的唯一元素是
2n+2-4
2n+2-4

计算过程如下:

查看答案和解析>>

精英家教网某高中地处县城,学校规定家到学校的路程在10里以内的学生可以走读,因交通便利,所以走读生人数很多.该校学生会先后5次对走读生的午休情况作了统计,得到如下资料:
①若把家到学校的距离分为五个区间:[0,2)、[2,4)、[4,6)、[6,8)、[8,10),则调查数据表明午休的走读生分布在各个区间内的频率相对稳定,得到了如图所示的频率分布直方图;
②走读生是否午休与下午开始上课的时间有着密切的关系.下表是根据5次调查数据得到的下午开始上课时间与平均每天午休的走读生人数的统计表.
下午开始上课时间 1:30 1:40 1:50 2:00 2:10
平均每天午休人数 250 350 500 650 750
(Ⅰ)若随机地调查一位午休的走读生,其家到学校的路程(单位:里)在[2,6)的概率是多少?
(Ⅱ)如果把下午开始上课时间1:30作为横坐标0,然后上课时间每推迟10分钟,横坐标x增加1,并以平均每天午休人数作为纵坐标y,试列出x与y的统计表,并根据表中的数据求平均每天午休人数
y
与上课时间x之间的线性回归方程
y
=bx+a;
(Ⅲ)预测当下午上课时间推迟到2:20时,家距学校的路程在6里路以上的走读生中约有多少人午休?
(注:线性回归直线方程系数公式b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a=
.
y
-b
.
x
.)

查看答案和解析>>

在对人们休闲方式的一次调查中,根据数据建立如下的2×2列联表:
休闲
性别
看电视 运动
8 20
16 12
为了判断休闲方式是滞与性别有关,根据表中数据,得到x2=
56×(8×12-20×16)2
28×28×24×32
≈4.667
,因为3.841≤x2≤6.635,所以判定休闲方式与性别有关系,那么这种判断出错的可能性至多为(  )
(参考数据:P(x2≥3.841)≈0.05,P(x2≥6.635)≈0.01)

查看答案和解析>>

某校从参加高三年级理科综合物理考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;

(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的

平均分;

(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在分,在分,

分,用表示抽取结束后的总记分,求的分布列和数学期望.

【解析】(1)中利用直方图中面积和为1,可以求解得到分数在内的频率为

(2)中结合平均值可以得到平均分为:

(3)中用表示抽取结束后的总记分x, 学生成绩在的有人,在的有人,在的有人,结合古典概型的概率公式求解得到。

(Ⅰ)设分数在内的频率为,根据频率分布直方图,则有,可得,所以频率分布直方图如右图.……4分

(求解频率3分,画图1分)

(Ⅱ)平均分为:……7分

(Ⅲ)学生成绩在的有人,在的有人,

的有人.并且的可能取值是.    ………8分

.(每个1分)

所以的分布列为

0

1

2

3

4

…………………13分

 

查看答案和解析>>


同步练习册答案