题目列表(包括答案和解析)
设f (x)=sin 2x+
(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 该函数的图象可由
的图象经过怎样的平移和伸缩变换得到?
(Ⅱ)若f (θ)=
,其中
,求cos(θ+
)的值;
【解析】第一问中,![]()
即
变换分为三步,①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
的图象;
第二问中因为
,所以
,则
,又![]()
,
,从而![]()
进而得到结论。
(Ⅰ) 解:![]()
即
。…………………………………3分
变换的步骤是:
①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
的图象;…………………………………3分
(Ⅱ) 解:因为
,所以
,则
,又![]()
,
,从而
……2分
(1)当
时,
;…………2分
(2)当
时;![]()
解::因为
,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=
与y=-
在(0,+
)上都是增函数,因此
在(0,+
)上是增函数,所以零点个数只有一个方法2:把函数
的零点个数个数问题转化为判断方程
解的个数问题,近而转化成判断
与
交点个数问题,在坐标系中画出图形
由图看出显然一个交点,因此函数
的零点个数只有一个
袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.
已知PQ为过双曲线的一个焦点F且垂直于实轴的弦,F′是另一个焦点,若∠PF′Q=
,则双曲线的离心率是_________.
下列推理合理的是( )
A.
是增函数,则![]()
B.因为
,所以
(
是虚数单位)
C.
是锐角
的两个内角,则![]()
D.直线
,则
(
分别为直线
的斜率)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com