题目列表(包括答案和解析)
数列
首项
,前
项和
满足等式
(常数
,
……)
(1)求证:
为等比数列;
(2)设数列
的公比为
,作数列
使
(
……),求数列
的通项公式.
(3)设
,求数列
的前
项和
.
【解析】第一问利用由
得![]()
两式相减得![]()
故
时,![]()
从而
又
即
,而![]()
从而
故![]()
第二问中,
又
故
为等比数列,通项公式为![]()
第三问中,![]()
两边同乘以![]()
利用错位相减法得到和。
(1)由
得![]()
两式相减得![]()
故
时,![]()
从而
………………3分
又
即
,而![]()
从而
故![]()
对任意
,
为常数,即
为等比数列………………5分
(2)
……………………7分
又
故
为等比数列,通项公式为
………………9分
(3)![]()
两边同乘以![]()
………………11分
两式相减得![]()
![]()
【解析】本小题考查直线方程的求法。画草图,由对称性可猜想
。
事实上,由截距式可得直线
,直线
,两式相减得
,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故为所求的直线OF的方程。
答案
。
⊙O1和⊙O2的极坐标方程分别为
,
.
⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.
【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用
(1)中,借助于公式
,
,将极坐标方程化为普通方程即可。
(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。
解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(I)
,
,由
得
.所以
.
即
为⊙O1的直角坐标方程.
同理
为⊙O2的直角坐标方程.
(II)解法一:由
解得
,![]()
即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.
解法二: 由
,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com