Eξ=0×+1×+2×+3×+4×=. 8分 查看更多

 

题目列表(包括答案和解析)

2013年4月20日8点02分四川省雅安市芦山县(北纬30.3度,东经103.0度)
发生7.0级地震,此次地震中,受灾面积大,伤亡惨重,医疗队到达后,都会选择一个合理的位置,使伤员能在最短的时间内得到救治.医疗队首先到达O点,设有四个乡镇,分别位于一个矩形ABCD的四个顶点A,B,C,D,为了救灾及灾后实际重建需要.需要修建三条小路OE、EF和OF,要求O是AB的中点,点E在边BC上,点F在边AD上,AB=50千米,BC=25
3
千米且∠EOF=90°,如图所示.
(1)设∠BOE=α,试将△OEF的周长表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每千米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

(本小题满分13分)
定义F(xy)=(1+x)y,其中xy∈(0,+∞).
(1)令函数f(x)=F(1,log2(x3ax2bx+1)),其图象为曲线C,若存在实数b使得曲线Cx0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(2)令函数g(x)=F(1,log2[(lnx-1)exx]),是否存在实数x0∈[1,e],使曲线yg(x)在点xx0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
(3)当xy∈N?,且x<y时,求证:F(xy)>F(yx).

查看答案和解析>>

已知下列命题:
(1)|
a
|2=
a
2

(2)
a
b
a
2
=
b
a

(3)(
a
b
)2=
a
2
b
2

(4)(
a
-
b
)2=
a
2
-2
a
b
+
b
2

(5)
a
b
?存在唯一的实数λ∈R,使得
b
a

(6)
e
为单位向量,且
a
e
,则
a
=±|
a
|•
e

(7)|
a
a
a
|=|
a
|3

(8)
a
b
共线,
b
c
共线,则
a
c
共线;
(9)若
a
b
=
b
c
b
0
,则
a
=
c

(10)若
OA
=
a
OB
=
b
a
b
不共线,则∠AOB平分线上的向量
OM
λ(
a
|
a
|
+
b
|
b
|
)
,λ由
OM
确定./
其中正确命题的序号
 

查看答案和解析>>

已知下列命题:
(1)|
a
|2=
a
2

(2)
a
b
a
2
=
b
a

(3)(
a
b
)2=
a
2
b
2

(4)(
a
-
b
)2=
a
2
-2
a
b
+
b
2

(5)
a
b
?存在唯一的实数λ∈R,使得
b
a

(6)
e
为单位向量,且
a
e
,则
a
=±|
a
|•
e

(7)|
a
a
a
|=|
a
|3

(8)
a
b
共线,
b
c
共线,则
a
c
共线;
(9)若
a
b
=
b
c
b
0
,则
a
=
c

(10)若
OA
=
a
OB
=
b
a
b
不共线,则∠AOB平分线上的向量
OM
λ(
a
|
a
|
+
b
|
b
|
)
,λ由
OM
确定./
其中正确命题的序号 ______.

查看答案和解析>>

已知随机变量X的分布列为

X
 
1
 
2
 
3
 
P
 
0.2
 
0.4
 
0.4
 
 
则E(6X+8)=(  )
A.13.2      B.21.2         C.20.2      D.22.2

查看答案和解析>>


同步练习册答案