(3)设.由条件.得. 查看更多

 

题目列表(包括答案和解析)

是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”

(Ⅰ)判断函数是否是集合中的元素,并说明理由

(Ⅱ)集合中的元素具有下面的性质:“若的定义域为,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根

查看答案和解析>>

设a,b,c分别是△ABC的三个角A,B,C所对的边,研究A=2B是a2=b(b+c)的什么条件?以下是某同学的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB⇒a=2bcosB
⇒a=2b•
a2+c2-b2
2ac
.变形得a2c=a2b+bc2-b3⇒a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分条件.
请你研究这位同学解法的正误,并结合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的(  )条件.

查看答案和解析>>

设a,b,c分别是△ABC的三个角A,B,C所对的边,研究A=2B是a2=b(b+c)的什么条件?以下是某同学的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB?a=2bcosB
?a=2b•
a2+c2-b2
2ac
.变形得a2c=a2b+bc2-b3?a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分条件.
请你研究这位同学解法的正误,并结合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.非充分非必要

查看答案和解析>>

设a,b,c分别是△ABC的三个角A,B,C所对的边,研究A=2B是a2=b(b+c)的什么条件?以下是某同学的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB?a=2bcosB
?a=2b•数学公式.变形得a2c=a2b+bc2-b3?a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分条件.
请你研究这位同学解法的正误,并结合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的条件.


  1. A.
    充分非必要
  2. B.
    必要非充分
  3. C.
    充要
  4. D.
    非充分非必要

查看答案和解析>>

由于生产条件的影响,生产某种产品正品的概率为
7
8
,次品的概率分别为
1
8
.已知生产1件正品获得的利润为6万元,而生产1件次品则亏损2万元.
(1)求生产3件产品恰有2件正品的概率;
(2)设2件产品的利润和(单位:万元)为ξ,求ξ的分布列和数学期望.

查看答案和解析>>


同步练习册答案