(Ⅰ)若直线m与x轴正半轴的交点为T.且.求点T的坐标, (Ⅱ)求直线A1P与直线A2Q的交点M的轨迹E的方程, 查看更多

 

题目列表(包括答案和解析)

精英家教网如图直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2-14x+4(AB+2)=0的两个根(OA<OB),P为直线l上异于A、B两点之间的一动点. 且PQ∥OB交OA于点Q.
(1)求直线lAB斜率的大小;
(2)若S△PAQ=
13
S四OQPB
时,请你确定P点在AB上的位置,并求出线段PQ的长;
(3)在y轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M的坐标;
若不存在,说明理由.

查看答案和解析>>

如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点.且PQ∥OA交OB于点Q.
(1)若△PBQ和四边形OQPA的面积满足S四OQPA=3S△PBQ时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M与P的坐标;若不存在,说明理由.

查看答案和解析>>

如图直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2-14x+4(AB+2)=0的两个根(OA<OB),P为直线l上异于A、B两点之间的一动点. 且PQ∥OB交OA于点Q.
(1)求直线lAB斜率的大小;
(2)若数学公式时,请你确定P点在AB上的位置,并求出线段PQ的长;
(3)在y轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M的坐标;
若不存在,说明理由.

查看答案和解析>>

如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点.且PQ∥OA交OB于点Q.
(1)若△PBQ和四边形OQPA的面积满足S四OQPA=3S△PBQ时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M与P的坐标;若不存在,说明理由.

查看答案和解析>>

设直线l:y=kx+m与x轴、y轴正半轴分别交于A、B两点,M、N是直线l上两点且
AM
=
MN
=
NB
,曲线C过点M、N.
(1)若曲线C的方程是x2+y2=20,求直线l的方程;
(2)若曲线C是中心在原点、焦点在x轴上的椭圆且离心率e∈(0,
3
2
)
,求直线l斜率的取值范围.

查看答案和解析>>

 

一、选择题(每小题5分,共60分)

2,4,6

二、填空题(每小题4分,共16分)

20080924

三、解答题:(本大题共6小题,共74分)

17.解:(Ⅰ)∵

  

∴函数的最小正周期  

(Ⅱ)∵,  ∴  

  

  

∴函数时的值域为[-1,2]  

18.解:(Ⅰ)记“任取2个乒乓球,恰好取得1个黄色乒乓球”为事件A,则

    

(Ⅱ)记“第一次取得白色乒乓球时,恰好已取出1个黄色乒乓球”为事件B;记“第一次取得白色乒乓球时,恰好已取出2个黄色乒乓球”为事件C. 则

    

   

∵事件B与事件C是互斥事件,

∴第一次取得白色乒乓球时,已取出的黄色乒乓球个数不少于1个的概率为

P(B+C)=P(B)+P(C)=   

19.解:(1)∵SD⊥AD,SD⊥AB,AD∩AB=A∴SD⊥平面ABCD,

又∵SD平面SBD,  ∴平面SDB⊥平面ABCD。

   (2)由(1)知平面SDB⊥平面ABCD,

BD为平面SDB与平面ABCD的交线,过点A作AE⊥DB于E,则AE⊥平面SDB,

由三垂线定理的逆定理得 EF⊥SB,

∴∠AFE为二面角A―SB―D的平面角。

在矩形ABCD中,设AD=a,则

在Rt△SBC中,

而在Rt△SAD中,SA=2a,又AB=2a,∴SB2=SA2+AB2

即△SAB为等腰直角三角形,且∠SAB为直角,

故二面角A―SB―D的大小为  

20.解:(Ⅰ)设等差数列{an}的公差为d,由题意

 

   

   (Ⅱ)∵  

 

∴数列{bn}的前n项和

      

 

21.解:(Ⅰ)由题,得,设

  …………①

在双曲线上,则   …………②

联立①、②,解得    

由题意,

∴点T的坐标为(2,0)  

   (Ⅱ)设直线A1P与直线A2Q的交点M的坐标为(x,y)

由A1、P、M三点共线,得

   …………③ 

由A2、Q、M三点共线,得

   …………④

联立③、④,解得    

在双曲线上,

∴轨迹E的方程为 

22.解:(Ⅰ)设P(x,y)是函数图象上的任意一点,它在函数图象上的对应点,则由平移公式,得  

    ∴   代入函数中,得

       

    ∴函数的表达式为  

  (Ⅱ)函数的对称轴为

①当时,函数在[]上为增函数,

   

②当时,

   

③当时,函数在[]上为减函数,

,应舍去     

综上所述,有