22. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

 

一、选择题(每小题5分,共60分)

2,4,6

二、填空题(每小题4分,共16分)

20080924

三、解答题:(本大题共6小题,共74分)

17.解:(Ⅰ)∵

  

∴函数的最小正周期  

(Ⅱ)∵,  ∴  

  

  

∴函数时的值域为[-1,2]  

18.解:(Ⅰ)记“任取2个乒乓球,恰好取得1个黄色乒乓球”为事件A,则

    

(Ⅱ)记“第一次取得白色乒乓球时,恰好已取出1个黄色乒乓球”为事件B;记“第一次取得白色乒乓球时,恰好已取出2个黄色乒乓球”为事件C. 则

    

   

∵事件B与事件C是互斥事件,

∴第一次取得白色乒乓球时,已取出的黄色乒乓球个数不少于1个的概率为

P(B+C)=P(B)+P(C)=   

19.解:(1)∵SD⊥AD,SD⊥AB,AD∩AB=A∴SD⊥平面ABCD,

又∵SD平面SBD,  ∴平面SDB⊥平面ABCD。

   (2)由(1)知平面SDB⊥平面ABCD,

BD为平面SDB与平面ABCD的交线,过点A作AE⊥DB于E,则AE⊥平面SDB,

由三垂线定理的逆定理得 EF⊥SB,

∴∠AFE为二面角A―SB―D的平面角。

在矩形ABCD中,设AD=a,则

在Rt△SBC中,

而在Rt△SAD中,SA=2a,又AB=2a,∴SB2=SA2+AB2

即△SAB为等腰直角三角形,且∠SAB为直角,

故二面角A―SB―D的大小为  

20.解:(Ⅰ)设等差数列{an}的公差为d,由题意

 

   

   (Ⅱ)∵  

 

∴数列{bn}的前n项和

      

 

21.解:(Ⅰ)由题,得,设

  …………①

在双曲线上,则   …………②

联立①、②,解得    

由题意,

∴点T的坐标为(2,0)  

   (Ⅱ)设直线A1P与直线A2Q的交点M的坐标为(x,y)

由A1、P、M三点共线,得

   …………③ 

由A2、Q、M三点共线,得

   …………④

联立③、④,解得    

在双曲线上,

∴轨迹E的方程为 

22.解:(Ⅰ)设P(x,y)是函数图象上的任意一点,它在函数图象上的对应点,则由平移公式,得  

    ∴   代入函数中,得

       

    ∴函数的表达式为  

  (Ⅱ)函数的对称轴为

①当时,函数在[]上为增函数,

   

②当时,

   

③当时,函数在[]上为减函数,

,应舍去     

综上所述,有