题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
A
C
D
C
C
A
D
B
D
C
二、填空题(本大题共4小题,每小题4分,共16分)
13、
; 14、
; 15、32; 16、2
三、解答题:(本大题共6小题,共74分,)
17、解:(I)理科数学.files/image133.gif)
理科数学.files/image206.gif)
……………………………………………………4分
………………………………………………………………6分
(II)由余弦定理
得
理科数学.files/image214.gif)
……………………………………………………………………9分
而
,理科数学.files/image220.gif)
函数理科数学.files/image222.gif)
当
………………………………………12分
18、解:由上表可求出10次记录下的有记号的红鲫鱼与中国金鱼数目的平均数均为20,故可认为池塘中的红鲫鱼与中国金鱼的数目相同,设池塘中两种鱼的总数是
,则有
, 即
,
------------4分
所以,可估计水库中的红鲫鱼与中国金鱼的数量均为25000. ------------6分
(Ⅱ)显然,
,
-----------9分
其分布列为
理科数学.files/image146.gif)
0
1
2
3
4
5
理科数学.files/image233.gif)
理科数学.files/image235.gif)
理科数学.files/image237.gif)
理科数学.files/image239.gif)
理科数学.files/image239.gif)
理科数学.files/image237.gif)
理科数学.files/image235.gif)
---------11分
数学期望
.
-----------12分
|