14.注意:在以下两题中任选一题.如果两题都做.按(1)给分. 查看更多

 

题目列表(包括答案和解析)

注意:在以下(1)(2)两题中任选一题.如果两题都做,按(1)给分.
(1)(坐标系与参数方程选做题)极坐标系中,A(2,
π
6
),B(3,
6
),则A、B两点的距离是:
19
19

(2)(几何证明选讲选做题)如图AB是⊙O的直径,P为AB延长线上一点,PC切⊙O于点C,PC=4,PB=2.则⊙O的半径等于
3
3

查看答案和解析>>

注意:在以下(1)(2)两题中任选一题.如果两题都做,按(1)给分.
(1)(坐标系与参数方程选做题)极坐标系中,A(2,),B(3,),则A、B两点的距离是:   
(2)(几何证明选讲选做题)如图AB是⊙O的直径,P为AB延长线上一点,PC切⊙O于点C,PC=4,PB=2.则⊙O的半径等于   

查看答案和解析>>

(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)
甲:设数列{bn}的前n项和为Sn,且bn=2-Sn;数列{an} 为等差数列,且a5=9,a7=13.
(Ⅰ)求数列 {bn} 的通项公式;
(Ⅱ)若cn=anbn(n=1,2,3,…),Tn为数列{cn}的前n项和,求Tn
乙:定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,f(x)=
1
4x
-
a
2x
(a∈R)
(Ⅰ)求f(x)在[0,1]上的最大值;
(Ⅱ)若f(x)是[0,1]上的增函数,求实数a的取值范围.

查看答案和解析>>

(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)
甲:设数列{bn}的前n项和为Sn,且bn=2-Sn;数列{an} 为等差数列,且a5=9,a7=13.
(Ⅰ)求数列 {bn} 的通项公式;
(Ⅱ)若cn=anbn(n=1,2,3,…),Tn为数列{cn}的前n项和,求Tn
乙:定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,f(x)=
1
4x
-
a
2x
(a∈R)
(Ⅰ)求f(x)在[0,1]上的最大值;
(Ⅱ)若f(x)是[0,1]上的增函数,求实数a的取值范围.

查看答案和解析>>

(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)
甲:设数列{bn}的前n项和为Sn,且bn=2-Sn;数列{an} 为等差数列,且a5=9,a7=13.
(Ⅰ)求数列 {bn} 的通项公式;
(Ⅱ)若cn=anbn(n=1,2,3,…),Tn为数列{cn}的前n项和,求Tn
乙:定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,f(x)=数学公式(a∈R)
(Ⅰ)求f(x)在[0,1]上的最大值;
(Ⅱ)若f(x)是[0,1]上的增函数,求实数a的取值范围.

查看答案和解析>>

一、       选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

A

C

C

C

D

B

B

C

C

B

二、填空题

题号

     11

    12

   13  

  14(1)

  14(2)

答案

   6

  2

 

  3

三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.

15.解:(Ⅰ),不等式的解为

(Ⅱ)由(Ⅰ)可知

16、解:

 

   (I)函数的最小正周期是        ……………………………7分

   (II)∴   ∴   

     ∴               

    所以的值域为:                 …………12分

17、解:(1)因为成等差数列,所以2f(2)=f(1)+f(4),

即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

(2+m)2=(1+m)(4+m),得m=0.

(2) 若是两两不相等的正数,且依次成等差数列,设a=b-d,c=b+d,(d不为0);

f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

因为(a+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

所以:f(a)+f(c)<2f(b).

18. 解:(Ⅰ)的定义域关于原点对称

为奇函数,则  ∴a=0

(Ⅱ)∴在上单调递增

上恒大于0只要大于0即可,∴

上恒大于0,a的取值范围为

19. 解:(Ⅰ)设的公差为,则:

,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)当时,,由,得.     …………………5分

时,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以为首项,为公比的等比数列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

20.解:(Ⅰ)设函数

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常数k=8.

(Ⅲ)由(Ⅱ)知 

可知数列为首项,8为公比的等比数列

即以为首项,8为公比的等比数列. 则 

 


同步练习册答案