.又为平面的法向量, 查看更多

 

题目列表(包括答案和解析)

材料:采访零向量

  W:你好!零向量.我是《数学天地》的一名记者,为了让在校的高中生更好了解你,能不能对你进行一次采访呢?

  零向量:当然可以,我们向量王国随时恭候大家的光临,很乐意接受你的采访,让高中生朋友更加了解我,更好地为他们服务.

  W:好的,那就开始吧!你的名字有什么特殊的含义吗?

  零向量:零向量就是长度为零的向量,它与数字0有着密切的联系,所以用0来表示我.

  W:你与其他向量有什么共同之处呢?

  零向量:既然我是向量王国的一个成员,就具有向量的基本性质,如既有大小又有方向,在进行加、减法运算时满足交换律和结合律,还定义了与实数的积.

  W:你有哪些值得骄傲的特殊荣耀呢?

  零向量:首先,我的方向是不定的,可以与任意的向量平行.其次,我还有其他一些向量所没有的特殊待遇:如我的相反向量仍是零向量;在向量的线性运算中,我与实数0很有相似之处.

  W:你有如此多的荣耀,那么是否还有烦恼之事呢?

  零向量:当然有了,在向量王国还有许多“权利和义务”却大有把我排斥在外之意,如平行向量的定义,向量共线定理,两向量夹角的定义都对我进行了限制.所有这些确实给一些高中生带来了很多苦恼,在此我向大家真诚地说一声:对不起,这不是我的错.但我还是很高兴有这次机会与大家见面.

  W:OK!采访就到这里吧,非常感谢你的合作,再见!

  零向量:Bye!

阅读上面的材料回答下面问题.

应用零向量时应注意哪些问题?

查看答案和解析>>

动物中的数学“天才”

  蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成.组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料.蜂房的巢壁厚0.073毫米,误差极小.

  丹顶鹤总是成群结队迁飞,而且排成“人”字形.“人”字形的角度是110度.更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?

  蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案.

  冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少.

  真正的数学“天才”是珊瑚虫.珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条.奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”.天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天.

1.同学们,大自然中有许多有关数学的奥妙,许多现象有意无意地应用着数学,对于这些现象你有什么看法吗?请你谈谈你对大自然中的数学现象的认识.

2.把你发现的大自然中的数学问题告诉你的同学和老师,让他们也分享一下你认识大自然的乐趣.

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)   求证:A1C⊥平面BCDE;

(2)   若M是A1D的中点,求CM与平面A1BE所成角的大小;

(3)   线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由

【解析】(1)∵DE∥BC∴又∵

(2)如图,以C为坐标原点,建立空间直角坐标系C-xyz,

设平面的法向量为,则,又,所以,令,则,所以

设CM与平面所成角为。因为

所以

所以CM与平面所成角为

 

查看答案和解析>>


同步练习册答案