解:(Ⅰ)∵(). 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)当a=2时,解关于x的不等式:(x+a)(x-2a+1)<0
(Ⅱ)解关于x的不等式:(x-1)(x-2a+1)<0.

查看答案和解析>>

(Ⅰ)阅读理解:
①对于任意正实数a,b,∵(
a
-
b
)2≥0, ∴a-2
ab
+b≥0
,∴a+b≥2
ab

只有当a=b时,等号成立.
②结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p

只有当a=b时,a+b有最小值2
p

(Ⅱ)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)
①若m>0,只有当m=
 
时,m+
1
m
有最小值
 

②若m>1,只有当m=
 
时,2m+
8
m-1
有最小值
 

(Ⅲ)探索应用:
学校要建一个面积为392m2的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图).问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值.
精英家教网

查看答案和解析>>

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


现有5名同学的物理和数学成绩如下表:

物理

64

61

78

65

71

数学

66

63

88

76

73

(1)画出散点图;

(2)若具有线性相关关系,试求变量的回归方程并求变量的回归方程.

查看答案和解析>>

(Ⅰ)(20分)在复数范围内解方程(i为虚数单位)

   (Ⅱ)设z是虚数,ω=z+是实数,且-1<ω<2

(1)求|z|的值及z的实部的取值范围;(10分)

(2)设u=,求证:u为纯虚数;(5分)

(3)求ω-u2的最小值,(5分)

 

查看答案和解析>>

(Ⅰ)(20分)在复数范围内解方程(i为虚数单位)
(Ⅱ)设z是虚数,ω=z+是实数,且-1<ω<2
(1)求|z|的值及z的实部的取值范围;(10分)
(2)设u=,求证:u为纯虚数;(5分)
(3)求ω-u2的最小值,(5分)

查看答案和解析>>


同步练习册答案