得.将其代入双曲线方程得,解得. 查看更多

 

题目列表(包括答案和解析)

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

查看答案和解析>>

等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为(      )

                                        

【解析】设等轴双曲线方程为,抛物线的准线为,由,则,把坐标代入双曲线方程得,所以双曲线方程为,即,所以,所以实轴长,选C.

 

查看答案和解析>>

阅读下面材料:

    根据两角和与差的正弦公式,有

------①

        ------②

由①+② 得------③

 有

代入③得

(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:

;

(Ⅱ)若的三个内角满足,试判断的形状.

(提示:如果需要,也可以直接利用阅读材料及()中的结论)

 

查看答案和解析>>

阅读下面材料:

根据两角和与差的正弦公式,有

------①

------②

由①+② 得------③

 有

代入③得 .

 (1) 类比上述推理方法,根据两角和与差的余弦公式,证明:

;

 (2)若的三个内角满足,直接利用阅读材料及(1)中的结论试判断的形状.

 

查看答案和解析>>

(10分)如图,这是一个奖杯的三视图,(1)请你说明这个奖杯是由哪些基本几何体组成的;(2)求出这个奖杯的体积(列出计算式子,将数字代入即可,不必求出最终结果).

 

 

 

查看答案和解析>>


同步练习册答案