题目列表(包括答案和解析)
已知
的展开式中第3项的系数与第5项的系数之比为
.
(1)求
的值;(2)求展开式中的常数项.
【解析】(1)利用二项展开式的通项公式求出展开式的通项,求出展开式中第3项与第5项的系数列出方程求出n的值.
(2)将求出n的值代入通项,令x的指数为0求出r的值,将r的值代入通项求出展开式的常数项.
设抛物线
:
(
>0)的焦点为
,准线为
,
为
上一点,已知以
为圆心,
为半径的圆
交
于
,
两点.
(Ⅰ)若
,
的面积为
,求
的值及圆
的方程;
(Ⅱ)若
,
,
三点在同一条直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
,
距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线
于
轴的焦点为E,圆F的半径为
,
![]()
则|FE|=
,
=
,E是BD的中点,
(Ⅰ) ∵
,∴
=
,|BD|=
,
设A(
,
),根据抛物线定义得,|FA|=
,
∵
的面积为
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=
, ∴圆F的方程为:
;
(Ⅱ) 解析1∵
,
,
三点在同一条直线
上, ∴
是圆
的直径,
,
由抛物线定义知
,∴
,∴
的斜率为
或-
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
设直线
的方程为:
,代入
得,
,
∵
与
只有一个公共点,
∴
=
,∴
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
∴坐标原点到
,
距离的比值为3.
解析2由对称性设
,则![]()
点
关于点
对称得:![]()
得:
,直线![]()
切点![]()
直线![]()
坐标原点到
距离的比值为![]()
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
|
零件的个数x(个) |
2 |
3 |
4 |
5 |
|
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
![]()
(2)求出y关于x的线性回归方程
,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
(注:
)
【解析】第一问中利用数据描绘出散点图即可
第二问中,由表中数据得
=52.5,
=3.5,
=3.5,
=54,∴
=0.7,
=1.05得到回归方程。
第三问中,将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时)得到结论。
(1)散点图如下图.
………………4分
(2)由表中数据得
=52.5,
=3.5,
=3.5,
=54,
∴
=…=0.7,
=…=1.05.
∴
=0.7x+1.05.回归直线如图中所示.………………8分
(3)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时),
∴预测加工10个零件需要8.05小时
|
| α |
|
| β |
|
| π |
| 4 |
| ||
| 2 |
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com