所以满足条件的n的最小值为13. ---------- 12分 查看更多

 

题目列表(包括答案和解析)

(2010•南京三模)在直角坐标系xOy中,椭圆
x2
9
+
y2
4
=1
的左、右焦点分别为F1、F2,点A为椭圆的左顶点,椭圆上的点P在第一象限,PF1⊥PF2,⊙O的方程为x2+y2=4
(1)求点P坐标,并判断直线PF2与⊙O的位置关系;
(2)是否存在不同于点A的定点B,对于⊙O上任意一点M,都有
MB
MA
为常数,若存在,求所以满足条件的点B的坐标;若不存在,说明理由.

查看答案和解析>>

在直角坐标系xOy中,椭圆的左、右焦点分别为F1、F2,点A为椭圆的左顶点,椭圆上的点P在第一象限,PF1⊥PF2,⊙O的方程为x2+y2=4
(1)求点P坐标,并判断直线PF2与⊙O的位置关系;
(2)是否存在不同于点A的定点B,对于⊙O上任意一点M,都有为常数,若存在,求所以满足条件的点B的坐标;若不存在,说明理由.

查看答案和解析>>

已知m、n、s、t为正数,m+n=2,
m
s
+
n
t
=9其中m、n是常数,且s+t最小值是
4
9
,满足条件的点(m,n)是椭圆
x2
4
+
y2
2
=1一弦的中点,则此弦所在的直线方程为(  )

查看答案和解析>>

(2013•浦东新区二模)已知直角△ABC的三边长a,b,c,满足a≤b<c
(1)在a,b之间插入2011个数,使这2013个数构成以a为首项的等差数列{an },且它们的和为2013,求c的最小值;
(2)已知a,b,c均为正整数,且a,b,c成等差数列,将满足条件的三角形的面积从小到大排成一列S1,S2,S3,…Sn,且Tn=-S1+S2-S3+…+(-1) nSn,求满足不等式T2n>6•2n+1的所有n的值;
(3)已知a,b,c成等比数列,若数列{Xn}满足
5
Xn=(
c
a
)n-(-
a
c
)n
(n∈N+),证明:数列{
Xn
}中的任意连续三项为边长均可以构成直角三角形,且Xn是正整数.

查看答案和解析>>

设f(x)是定义在D上的函数,若对D中的任意两数x1,x2(x1≠x2),恒有f(
1
3
x1+
2
3
x2
)<
1
3
f(x1)+
2
3
f(x2)
,则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数f(x)=x2是否为定义域上的C函数,并说明理由;
(Ⅱ)若函数f(x)是R上的奇函数,试证明f(x)不是R上的C函数;
(Ⅲ)设f(x)是定义在D上的函数,若对任何实数a∈[0,1]以及D中的任意两数x1,x2(x1≠x2),恒有f(ax1+(1-a)x2)≤af(x1)+(1-a)f(x2),则称f(x)为定义在D 上的π函数.已知f(x)是R上的m函数.m是给定的正整数,设an=f(n),n=0,1,2,…m,且a0=0,am=2m,记Sf=a1+a2+…+am.对于满足条件的任意函数f(x),试求Sf的最大值.

查看答案和解析>>


同步练习册答案