解 y′=3x2-,令y′=3x2-=0,即x2-=0,解得x=±1.由于x>0,所以x=1.在上.由于只有一个极小值.所以它也是最小值.从而函数在上的最小值为y=f(1)=4.答案 A 查看更多

 

题目列表(包括答案和解析)

已知:集合A={x|y=
1
4-x2
}
,集合B={y|y=2x}.
(1)求集合A∪B,A∩(?RB)(R是实数集);
(2)若不等式3x2+mx+n<0的解集是A,求m,n的值.

查看答案和解析>>

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f''(x)是函数y=f(x)的导数f′(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心”,且‘拐点’就是对称中心.请你将这一发现作为条件.
(1).函数f(x)=x3-3x2+3x的对称中心为
(1,2)
(1,2)

(2).若函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,则g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)
=
2012
2012

查看答案和解析>>

(2009•东营一模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f''(x)是函数y=f(x)的导数y=f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
已知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

已知数列{an}满足以下两个条件:①点(an,an+1)在直线y=x+2上,②首项a1是方程3x2-4x+1=0的整数解,
(I)求数列{an}的通项公式;
(II)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,解不等式Tn≤Sn

查看答案和解析>>

设函数f(x)=ax3-3x2+bx,已知不等式
f(x)
x
<0的解集是{x|1<x<2}.
(1)求a、b的值.
(2)设函数g(x)=
f(x)
x2
,x∈[1,2],求函数y=g(x)的最小值及对应的x值.

查看答案和解析>>


同步练习册答案