(A) (B) (C)0 (D)1 查看更多

 

题目列表(包括答案和解析)

(A)(不等式选做题)
若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(几何证明选做题)
如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为
2
3
3
2
3
3

(C)(坐标系与参数方程选做题) 
在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
2或-8
2或-8

查看答案和解析>>

已知,则等于

(A)       (B)        (C){(0,0),(1,1)} (D)

 

查看答案和解析>>

若复数

       (A)       (B)0   (C)1   (D)

查看答案和解析>>

精英家教网(A题)如图,在椭圆
x2
a2
+
y2
8
=1(a>0)中,F1,F2分别是椭圆的左右焦点,B,D分别为椭圆的左右顶点,A为椭圆在第一象限内弧上的任意一点,直线AF1交y轴于点E,且点F1,F2三等分线段BD.
(1)若四边形EBCF2为平行四边形,求点C的坐标;
(2)设m=
S△AF1O
S△AEO
,n=
S△CF1O
S△CEO
,求m+n的取值范围.

查看答案和解析>>

(3)

(A)0          (B)1             (C)         (D)

查看答案和解析>>

一、选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

B

B

C

C

D

D

D

A

A

 

二、填空题(每小题5分,共20分)

13.         14.       15. 1            16.

三、简答题

17.解:依题记“甲答对一题”为事件A ;“乙答对一题”为事件B

2分

∴ξ的分布列:

ξ

0

1

2

P

                                                          8分

                              10分

18.解:当时,原式                              3分

时,有                             

∴原式=                           7分

时,

∴原式                                                   11分

综上所述:                              12分

19.解:设切点(),                                              3分

∵切线与直线平行

          或                        10分

∴切点坐标(1,-8)(-1,-12)

∴切线方程:

即:                                               12分

21.解:设底面一边长为,则另一边长

∴高为                                    3分

由:            ∴

∵体积

                                       6分

(舍去)

只有一个极值点

,此时高1.2m,最大容积为         11分

答:高为1.2m 时体积最大,最大值为1.8              12分

22.解:假设存在

时,由即:

时,   ∴

猜想:

证明:1. 当时,已证

         2. 假设时结论成立

      

即为时结论也成立

由(1)(2)可知,对大于1的自然数n,存在,使成立                                                             12分


同步练习册答案