22. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

一、选择题:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

2,4,6

13.    14.7   15.2    16.

17.17.解:(1)  --------------------2分

 --------------------4分

--------------------6分

.--------------------8分

时(9分),取最大值.--------------------10分

(2)当时,,即,--------------------11分

解得.-------------------- 12分

18.解法一 “有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”,记“有放回摸球两次,两球恰好颜色不同”为事件A,

∵“两球恰好颜色不同”共2×4+4×2=16种可能,

解法二  “有放回摸取”可看作独立重复实验∵每次摸出一球得白球的概率为

∴“有放回摸两次,颜色不同”的概率为

(2)设摸得白球的个数为,依题意得

19.方法一

 

   (2)

20.解:(1)

  ∵ x≥1. ∴ ,-----------------------------------------------------2分

   (当x=1时,取最小值).

  ∴ a<3(a=3时也符合题意). ∴ a≤3.------------------------------------4分

  (2),即27-6a+3=0, ∴ a=5,.------------6分

,或 (舍去) --------------------------8分

时,; 当时,

  即当时,有极小值.又    ---------10分

   ∴ fx)在上的最小值是,最大值是. ----------12分

21.解:(Ⅰ)∵,∴,

∵数列{}的各项均为正数,∴

),所以数列{}是以2为公比的等比数列.………………3分

的等差中项,

,∴

∴数列{}的通项公式.……………………………………………………6分

   (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

      1

   ②

②-1得,

=……………………………10分

要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

∴使S>50成立的正整数n的最小值为5. ……………………………12分

22.解:(Ⅰ)由已知得

 

              …………4分

  (Ⅱ)设P点坐标为(x,y)(x>0),由

        

                       …………5分    

         ∴   消去m,n可得

             ,又因     8分 

        ∴ P点的轨迹方程为  

        它表示以坐标原点为中心,焦点在轴上,且实轴长为2,焦距为4的双曲线

的右支             …………9分

(Ⅲ)设直线l的方程为,将其代入C的方程得

        

        即                          

 易知(否则,直线l的斜率为,它与渐近线平行,不符合题意)

        又     

       设,则

       ∵  l与C的两个交点轴的右侧

          

       ∴ ,即     

又由  同理可得       …………11分

        由

       

     ∴

   由

           

  由

           

消去

解之得: ,满足                …………13分

故所求直线l存在,其方程为:  …………14分