题目列表(包括答案和解析)
(本小题满分12分)二次函数
的图象经过三点
.![]()
(1)求函数
的解析式(2)求函数
在区间
上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:
;
(本小题满分12分)已知函数
,其中a为常数.
(Ⅰ)若当
恒成立,求a的取值范围;
(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为
,乙投篮命中的概率为![]()
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知
是椭圆
的两个焦点,O为坐标原点,点
在椭圆上,且
,圆O是以
为直径的圆,直线
与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当
时,求弦长|AB|的取值范围.
1.D 2.C 3.C 4.D 5.A 6.D 7.B 8.C 9.A 10.B
11.B 12.D
13.
14.
15. 11 16.

17.(本小题满分12分)
解:(1)
又

(2)
又

18.(本小题满分12分)
解:(1)
∴
∴


(2)∵
∴


最小正周期为
由
得
故
的单调递增区间为
19.(本小题满分12分)
解:(1)
成等差数列,







(2)





20、(本小题满分12分)
(I)解:由
得
,

(II)由
,
∴数列{
}是以S1+1=2为首项,以2为公比的等比数列,

当n=1时a1=1满足
(III)
①
,②
①-②得
,
则
.
21、(本小题满分12分) (1)证明:
(即
的对称轴
)



(2)由(1).

经判断:
极小
为0; 
.
22、(本小题满分12分)
解:(1)由椭圆定义及已知条件知2a=|F1B|+|F2B|=10,∴a=5.
又c=4,∴b2=a2-c2=9.
故椭圆方程为
+
=1.
(2)由点B在椭圆上,可知|F2B|=|yB|=
,而椭圆的右准线方程为x=
,离心率为
,
由椭圆定义有|F2A|=
(
-x1),|F2C|=
(
-x2).
依题意|F2A|+|F2C|=2|F2B|.
则
(
-x1)+
(
-x2)=2×
.
∴x1+x2=8.
设弦AC的中点为P(x0,y0),则x0=
=4,
即弦AC的中点的横坐标为4.
(3)由A(x1,y1),C(x2,y2)在椭圆上得9x12+25y12=9×25,9x22+25y22=9×25.
两式相减整理得9(
)+25(
)(
)=0(x1≠x2).
将
=x0=4,
=y0,
=-
(k≠0)代入得
9×4+25y0(-
)=0,即k=
y0.
由于P(4,y0)在弦AC的垂直平分线上,
∴y0=4k+m,于是m=y0-4k=y0-
y0=-
y0.
而-
<y0<
,∴-
<m<
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com