(Ⅱ)若求的长. 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)如图1,A,B,C是平面内的三个点,且A与B不重合,P是平面内任意一点,若点C在直线AB上,试证明:存在实数λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如图2,设G为△ABC的重心,PQ过G点且与AB、AC(或其延长线)分别交于P,Q点,若
AP
=m
AB
AQ
=n
AC
,试探究:
1
m
+
1
n
的值是否为定值,若为定值,求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

精英家教网(Ⅰ)如图,正方形OABC在二阶矩阵M对应的切变变换作用下变为平行四边形OA′B′C′,平行四边形OA'B'C'在二阶矩阵N对应的旋转变换作用下变为平行四边形OA''B''C'',求将正方形OABC变为平行四边形OA''B''C''的变换对应的矩阵.
(Ⅱ)在直角坐标系xOy中,圆O的参数方程为
x=-
2
2
+rcosθ
y=-
2
2
+rsinθ
(θ为参数,r>0).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l的极坐标方程为ρsin(θ+
π
4
)=
2
2
.写出圆心的极标,并求当r为何值时,圆O上的点到直线l的最大距离为3.
(Ⅲ)已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立,求实数x的取值范围.

查看答案和解析>>

(Ⅰ)阅读理解:
①对于任意正实数a,b,∵(
a
-
b
)2≥0, ∴a-2
ab
+b≥0
,∴a+b≥2
ab

只有当a=b时,等号成立.
②结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p

只有当a=b时,a+b有最小值2
p

(Ⅱ)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)
①若m>0,只有当m=
 
时,m+
1
m
有最小值
 

②若m>1,只有当m=
 
时,2m+
8
m-1
有最小值
 

(Ⅲ)探索应用:
学校要建一个面积为392m2的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图).问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值.
精英家教网

查看答案和解析>>

()选修4-1:几何证明讲

已知 ABC   中,AB=AC,  DABC外接圆劣弧上的点(不与点A,C重合),延长BD至E。

(1)       求证:AD的延长线平分CDE;

(2)       若BAC=30,ABC中BC边上的高为2+,求ABC外接圆的面积。

查看答案和解析>>

()(本小题满分12分)

在△ABC中,tanA=,tanB=.

(I)求角C的大小;

(II)若AB边的长为,求BC边的长

查看答案和解析>>

一、选择题:(8,每小题5,满分40)

题号

1

2

3

4

5

6

7

8

答案

A

C

D

C

A

D

B

B

二、填空题:(每题5分,共30分)

9. 8                10. 60             11. 8            12.

13. 10或0(答对一个给3分)        14.          15.

三、解答题(本大题共6小题,共80分)

16.(本题满分12分)

解:(Ⅰ) =……1分

=……2分

……4分

 

……6分

……7分

.……8分

(Ⅱ)在中,

……9分

由正弦定理知:……10分

=.

……12分

 

17. 本题满分12分

 解:(Ⅰ)由 是方程的两根,注意到.……2分

.

等比数列.的公比为,……4分

(Ⅱ)……5分

……7分

数列是首项为3,公差为1的等差数列. ……8分

(Ⅲ) 由(Ⅱ)知数列是首项为3,公差为1的等差数列,有

……=……

=……10分

,整理得,解得.……11分

的最大值是7. ……12分

 

18. 本题满分14分

解: (Ⅰ)从2种服装商品,2种家电商品,3种日用商品中,选出3种商品一共有种选法,.选出的3种商品中没有日用商品的选法有种, 所以选出的3种商品中至少有一种日用商品的概率为.……4分

(Ⅱ)顾客在三次抽奖中所获得的奖金总额是一随机变量,设为X,其所有可能值为0, ,2,3.……6分

X=0时表示顾客在三次抽奖中都没有获奖,所以……7分

 

同理可得……8分

……9分

……10分

于是顾客在三次抽奖中所获得的奖金总额的期望值是.……12分

要使促销方案对商场有利,应使顾客获奖奖金总额的期望值不大于商场的提价数额,因此应有,所以, …… 13分

故商场应将中奖奖金数额最高定为100元,才能使促销方案对商场有利. …… 14分

 

19.本题满分14分

.解:(Ⅰ) 证明:方法一)连AC,BD交于O点,连GO,FO,EO.

∵E,F分别为PC,PD的中点,∴//,同理//, //    

四边形EFOG是平行四边形, 平面EFOG. ……3分

又在三角形PAC中,E,O分别为PC,AC的中点,PA//EO……4分

平面EFOG,PA平面EFOG, ……5分

PA//平面EFOG,即PA//平面EFG. ……6分

方法二) 连AC,BD交于O点,连GO,FO,EO.

∵E,F分别为PC,PD的中点,∴//,同理//

//AB,//

平面EFG//平面PAB, ……4分

又PA平面PAB,平面EFG. ……6分

方法三)如图以D为原点,以

为方向向量建立空间直角坐标系.

则有关点及向量的坐标为:

……2分

设平面EFG的法向量为

.……4分

,……5分

平面EFG.

 AP//平面EFG. ……6分

(Ⅱ)由已知底面ABCD是正方形

,又∵面ABCD

平面PCD,向量是平面PCD的一个法向量, =……8分

又由(Ⅰ)方法三)知平面EFG的法向量为……9分

……10分

结合图知二面角的平面角为……11分

(Ⅲ) ……14分

 

20. 本题满分14分

 (Ⅰ)由题意可得点A,B,C的坐标分别为.……1分

设椭圆的标准方程是.……2分

……4分

.……5分

椭圆的标准方程是……6分

(Ⅱ)由题意直线的斜率存在,可设直线的方程为.……7分

设M,N两点的坐标分别为

联立方程:

消去整理得,

……9分

若以MN为直径的圆恰好过原点,则,所以,……10分

 

所以,,

所以,

……11分   得……12分

所以直线的方程为,或.……13分

所以存在过P(0,2)的直线:使得以弦MN为直径的圆恰好过原点. ……14分

 

21: 本题满分14分

 (Ⅰ)

……2分

 ……4分

(Ⅱ)

(?)0<t<t+2<,t无解;……5分

(?)0<t<<t+2,即0<t<时,;……7分

(?),即时,……9分

……10分

(Ⅲ)由题意:

可得……11分

,

……12分

,得(舍)

时,;当时,

时,取得最大值, =-2……13分

.

的取值范围是.……14分

 


同步练习册答案