C. 查看更多

 

题目列表(包括答案和解析)


C.选修4—4:坐标系与参数方程
(本小题满分10分)
在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数),判断直线和圆的位置关系.

查看答案和解析>>

C选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系中,求过椭圆为参数)的右焦点且与直线为参数)平行的直线的普通方程。

查看答案和解析>>

C.(选修4—4:坐标系与参数方程)

在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正

半轴建立平面直角坐标系,直线的参数方程为为参数),求直线

得的弦的长度.

 

查看答案和解析>>

C(坐标系与参数方程选做题)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为为参数),直线l的极坐标方程为.点P在曲线C上,则点P到直线l的距离的最小值为                

 

查看答案和解析>>

C.选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程是是参数),若以为极点,轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线的极坐标方程.

 

 

 

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.A   2.B    3.C   4.A   5.B

6.D   7.A   8.C   9.D   10.C

 

二、填空题:本大题共4小题,每小题4分,共16分.

11.    12.    13.    14.

15.       16.(也可表示成)    17.①②③

 

三、解答题:本大题共6小题,共74分.

18.解:(Ⅰ)由

                                         ---------4分

,得

,即为钝角,故为锐角,且

.                                     ---------8分

(Ⅱ)设

由余弦定理得

解得

.                        ---------14分

 

19.解:(Ⅰ)由,得

则平面平面

平面平面,

在平面上的射影在直线上,

在平面上的射影在直线上,

在平面上的射影即为点,

平面.                                 --------6分

(Ⅱ)连接,由平面,得即为直线与平面所成角。

在原图中,由已知,可得

折后,由平面,知

,即

则在中,有,则

即折后直线与平面所成角的余弦值为.       --------14分

 

20.解:(Ⅰ)由

,故

故数列为等比数列;                       --------6分

 

 

 

(Ⅱ)由(Ⅰ)可知

对任意的恒成立

由不等式恒成立,得

.           --------14分

 

21.解:

(Ⅰ)由已知可得

此时,                                 --------4分

的单调递减区间为;----7分

(Ⅱ)由已知可得上存在零点且在零点两侧值异号

时,,不满足条件;

时,可得上有解且

①当时,满足上有解

此时满足

②当时,即上有两个不同的实根

无解

综上可得实数的取值范围为.           --------15分

 

22.解:(Ⅰ)(?)由已知可得

则所求椭圆方程.          --------3分

(?)由已知可得动圆圆心轨迹为抛物线,且抛物线的焦点为,准线方程为,则动圆圆心轨迹方程为.     --------6分

(Ⅱ)由题设知直线的斜率均存在且不为零

设直线的斜率为,则直线的方程为:

联立

消去可得                 --------8分

由抛物线定义可知:

-----10分

同理可得                                --------11分

(当且仅当时取到等号)

所以四边形面积的最小值为.                   --------15分

 

 


同步练习册答案