题目列表(包括答案和解析)
.(本小题满分14分)已知函数f (x)=lnx,g(x)=ex.
( I)若函数φ (x) = f (x)-
,求函数φ (x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.
(本小题满分14分)
已知函数
,其中a是常数.[来源:Z|xx|k.Com]
(I)若曲线y=f(x)在点x=—2和x=2处的切线互相平行,求a的值;
(II)求函数f(x)的单调区间;
(III)探求关于x的方程
的根的
(本小题满分14分)
已知函数f(x)=
m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)当
时,求函数f(x)在区间[1,3]上的极小值;
(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];
(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.
(本小题满分14分
(文)已知函数f(x)=x3-x
(I)求曲线y=f(x)在点M(t,f(t))处的切线方程
(II)设常数a>0,如果过点P(a,m)可作曲线y= f(x)的三条切线,求m的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com