17. 袋中装有若干个质地均匀大小一致的红球和白球.白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回.若累计3次摸到红球则停止摸球.否则继续摸球直至第5次摸球后结束. (1)求摸球3次就停止的事件发生的概率, (2)记摸到红球的次数为ξ.求随机变量ξ的分布列及其期望. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)袋中装有35个球,每个球上都标有1到35的一个号码,设号码为n的球重克,这些球等可能地从袋中被取出.

(1)如果任取1球,试求其重量大于号码数的概率;

(2)如果不放回任意取出2球,试求它们重量相等的概率;

(3)如果取出一球,当它的重量大于号码数,则放回,搅拌均匀后重取;当它的重量小于号码数时,则停止取球.按照以上规则,最多取球3次,设停止之前取球次数为,求E.

 

查看答案和解析>>

(本小题满分14分) 

袋中装有10个大小相同的小球,其中黑球3个,白球个,其余均为红球;

(1)从袋中一次任取2个球,如果这2个球颜色相同的概率是,求红球的个数.

(2)在(1)的条件下,从袋中任取2个球,若取一个白球记1分,取一个黑球记2分,取一个红球记3分,用表示取出的两个球的得分的和;

①求随机变量的分布列及期望.^

②记“关于x的不等式的解集是实数集”为事件,求事件发生的概率.

查看答案和解析>>

(本小题满分14分) 

袋中装有10个大小相同的小球,其中黑球3个,白球个,其余均为红球;

(1)从袋中一次任取2个球,如果这2个球颜色相同的概率是,求红球的个数.

(2)在(1)的条件下,从袋中任取2个球,若取一个白球记1分,取一个黑球记2分,取一个红球记3分,用表示取出的两个球的得分的和;

①求随机变量的分布列及期望.^

②记“关于x的不等式的解集是实数集”为事件,求事件发生的概率.

查看答案和解析>>

(本小题满分12分)

从装有2只红球、2只白球和1只黑球的袋中逐一取球,已知每只球被取出的可能性相同.

(1)若取出后又放回,取3次,分别求事件A “恰好2次红球”、事件B “取全三种颜色球”的概率.

(2)若取出后不放回,假设恰好取完红球时所需次数为,求的分布列及其数学期望.

查看答案和解析>>

(本小题满分12分)有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.
(Ⅰ)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(Ⅱ)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。

查看答案和解析>>


同步练习册答案