21. 已知圆C1的方程为动圆C与圆C1.C2相外切. (I)求动圆C圆心轨迹E的方程, (II)若直线且与轨迹E交于P.Q两点. ①设点无论怎样转动.都有 成立?若存在.求出实数m的值,若不存在.请说明理由, ②过P.Q作直线的垂线PA.QB.垂足分别为A.B.记求的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知圆C1的方程为动圆C与圆C1、C2相外切。
(I)求动圆C圆心轨迹E的方程;
(II)若直线且与轨迹E交于P、Q两点。
①设点无论怎样转动,都有
成立?若存在,求出实数m的值;若不存在,请说明理由;
②过P、Q作直线的垂线PA、QB,垂足分别为A、B,记的取值范围。

查看答案和解析>>

已知圆C1的方程为x2+y2+4x-5=0,圆C2的方程为x2+y2-4x+3=0,动圆C与圆C1、C2相外切.
(I)求动圆C圆心轨迹E的方程;
(II)若直线l过点(2,0)且与轨迹E交于P、Q两点.
①设点M(m,0),问:是否存在实数m,使得直线l绕点(2,0)无论怎样转动,都有
MP
MQ
=0成立?若存在,求出实数m的值;若不存在,请说明理由;
②过P、Q作直线x=
1
2
的垂线PA、QB,垂足分别为A、B,记λ=
|
PA
|+|
QB
|
|
AB
|
,求λ,的取值范围.

查看答案和解析>>

已知圆C1的方程为(x+1)2+y2=16,圆C2的方程为(x-1)2+y2=4,动圆P经过圆C2的圆心且与圆C1相内切.

(1)求动圆P的圆心的轨迹C的方程;

(2)设MN是(1)中的轨迹C上的两点,若+2=3,其中O是坐标原点,求直线MN的方程.

查看答案和解析>>

已知圆C1的方程为(x+1)2+y2=16,圆C2的方程为(x-1)2+y2=4,动圆P经过圆C2的圆心且与圆C1相内切.

(Ⅰ)求动圆P的圆心的轨迹C的方程;

(Ⅱ)设M 、N是(Ⅰ)中的轨迹C上的两点,若,其中O是坐标原点,求直线MN的方程.

查看答案和解析>>

已知圆C1的圆心在坐标原点O,且恰好与直线l1数学公式相切.
(Ⅰ)求圆的标准方程;
(Ⅱ)设点A(x0,y0)为圆上任意一点,AN⊥x轴于N,若动点Q满足数学公式,(其中m+n=1,m,n≠0,m为常数),试求动点Q的轨迹方程C2
(Ⅲ)在(Ⅱ)的结论下,当数学公式时,得到曲线C,问是否存在与l1垂直的一条直线l与曲线C交于B、D两点,且∠BOD为钝角,请说明理由.

查看答案和解析>>


同步练习册答案