20. 20090411 设x1.x2是函数的两个极值点.且| x1-x2|=2. (I)证明0<a≤1, (II)证明: 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

,轮船位于港口O北偏西且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶。假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过t小时与轮船相遇。

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。

查看答案和解析>>

((本小题满分13分)

设数列为等差数列,且a5=14,a7=20。

(I)求数列的通项公式;

(II)若

 

 

查看答案和解析>>

(本小题满分13分)某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(Ⅰ)若建立函数模型制定奖励方案,试用数学语言表述公司对奖励函数模型的基本要求;(Ⅱ)现有两个奖励函数模型:(1)y;(2)y=4lgx-3.试分析这两个函数模型是否符合公司要求?

查看答案和解析>>

(本小题满分13分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.

(Ⅰ)求的值及的表达式;

(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值.

 

查看答案和解析>>

(本小题满分13分)

    某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O为圆心,且标有20元、10元、0元的三部分区域面积相等,假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券。(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券。)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.

  (I)若顾客甲消费了128元,求他获得优惠券面额大于0元的概率?

  (II)若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率?

                   

 

 

查看答案和解析>>


同步练习册答案