题目列表(包括答案和解析)
(本题满分12分)
已知椭圆的中心在原点
,焦点在坐标轴上,直线
与该椭圆相交于
和
,且
,
,求椭圆的方程.
(本题满分12分)
已知椭圆的中心在原点
,焦点在坐标轴上,直线
与该椭圆相交于
和
,且
,
,求椭圆的方程.
(本题满分12分)
已知椭圆
的中心在原点,焦点在
轴上,椭圆上的点到焦点的距离的最
小值为
,离心率为
。
(I)求椭圆
的方程;
(Ⅱ)过点(1,0)作直线
交
于
、
两点,试问:在
轴上是否存在一个定点
,使
为定值?若存在,求出这个定点
的坐标;若不存在,请说明理由。
(本题满分12分)
已知椭圆的中心在原点
,焦点在坐标轴上,直线
与该椭圆相交于
和
,且
,
,求椭圆的方程.
(本小题满分12分)
已知椭圆的中心在坐标原点
,长轴长为
,离心率
,过右焦点
与
轴不垂直的直线
交椭圆于
,
两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)在线段
上是否存在点
,使得以
为
邻边的平行四边形是菱形? 若存在,求出
的取值范围;
若不存在,请说明理由.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com