21. 已知焦点在x轴上.离心率为的椭圆的一个顶点是抛物线的焦点.过椭圆右焦点F的直线l交椭圆于A.B两点.交y轴于点M.且 (1)求椭圆方程, (2)证明:为定值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知点是椭圆Ea > b > 0)上一点,F1F2分别是椭圆E的左、右焦点,O是坐标原点,PF1x轴.

求椭圆E的方程;

AB是椭圆E上两个动点,是否存在λ,满足(0<λ<4,且λ≠2),且M(2,1)到AB的距离为?若存在,求λ值;若不存在,说明理由.

查看答案和解析>>

(本小题满分12分)

   已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线。        

查看答案和解析>>

(本小题满分12分)

已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若直线L:                 与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以M N为直径的圆经过椭圆的右顶点A.求证:直线过定点,并求出定点的坐标.

 

查看答案和解析>>

(本小题满分12分)

如图,设抛物线C1的准线与x轴交于F1,焦点为F2;以F1F2为焦点,离心率的椭圆C2与抛物线C1x轴上方的交点为P

m = 1时,求椭圆C2的方程;

当△PF1F2的边长恰好是三个连续的自然数时,求抛物线方程;此时设⊙C1、⊙C2……⊙Cn是圆心在上的一系列圆,它们的圆心纵坐标分别为a1a2……an,已知a1 = 6,a1 > a2 >……> an > 0,又⊙Ckk = 1,2,…,n)都与y轴相切,且顺次逐个相邻外切,求数列{an}的通项公式.

(第21题图)

 
 

查看答案和解析>>

(本小题满分12分)

求适合下列条件的圆锥曲线方程:

(1).长轴长是短轴长的3倍,经过点(3,0)的椭圆标准方程。

(2).已知双曲线两个焦点的坐标为,双曲线上一点P到两焦点的距离之差的绝对值等于6,求双曲线标准方程.

(3).已知抛物线的顶点在原点,准线与其平行线x=2的距离为3,求抛物线标准方程.

查看答案和解析>>


同步练习册答案